Skip to main content
Log in

Application of MgO-modified palygorskite for nutrient recovery from swine wastewater: effect of pH, ions, and organic acids

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, MgO-modified palygorskite (MgO-PAL) was used for simultaneous recovery of ammonia nitrogen (AN) and phosphate, and the effects of pH, ions, and organic acids on nutrient recovery were investigated. The highest removal amount of AN and phosphate separately reached 42.6 mg/g and 69.8 mg/g at pH of 9.0, 0.6 g/L dosage of modified palygorskite, and 180 min of the reaction time. MgO-PAL provided a wide range of pH (3–9) for nutrient removal. Mg released concentration was tested to investigate the removal mechanisms. The individual presence of four cations (K+, Ca2+, Na+, and Mg2+) showed negative effect on AN removal at different mass concentrations. However, those cations, except Na+, exhibited positive influence on phosphate removal. Compared with SO42−, CO32−showed more negative effect on nutrient removal due to the reaction between Mg2+ and CO32−. The results showed that the nutrient removal amount and the morphology and composition of collected products were not affected in the presence of acetic acid. Citric acid, humic acid, and fulvic acid displayed the inhibition effects on the morphology of the crystallized products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antonini S, Arias MA, Eichert T, Clemens J (2012) Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilizers as phosphorus sources for plants. Chemosphere 89:1202–1210

    Article  CAS  Google Scholar 

  • Darwish M, Aris A, Puteh MH, Jusoh MNH, Abdul Kadir A (2017) Waste bones ash as an alternative source of P for struvite precipitation. J Environ Manage 203:861–866

  • Di Iaconi C, Pagano M, Ramadori R, Lopez A (2010) Nitrogen recovery from a stabilized municipal landfill leachate. Bioresour Technol 101:1732–1736

    Article  CAS  Google Scholar 

  • Doyle JD, Parsons SA (2002) Struvite formation, control and recovery. Water Res 36:3925–3940

    Article  CAS  Google Scholar 

  • Ferrari S, Silva M, Guarino M, Berckmans D (2008) Analysis of cough sounds for diagnosis of respiratory infections in intensive pig farming. Trans ASABE 51:1051–1055

    Article  Google Scholar 

  • Guggenheim S, Krekeler MPS (2011) Chapter 1 - The structures and microtextures of the palygorskite–sepiolite group minerals. In: Emilio G, Arieh S (eds) Developments in Clay Science. Elsevier, pp 3–32

  • Huang HM, Xu CL, Zhang W (2011) Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology. Bioresour Technol 102:2523–2528

    Article  CAS  Google Scholar 

  • Huang H, Xiao D, Zhang Q, Ding L (2014a) Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources. J Environ Manag 145:191–198

    Article  CAS  Google Scholar 

  • Huang HM, Xiao D, Pang R, Han CC, Ding L (2014b) Simultaneous removal of nutrients from simulated swine wastewater by adsorption of modified zeolite combined with struvite crystallization. Chem Eng J 256:431–438

    Article  CAS  Google Scholar 

  • Krahenbuhl M, Etter B, Udert KM (2016) Pretreated magnesite as a source of low-cost magnesium for producing struvite from urine in Nepal. Sci Total Environ 542:1155–1161

    Article  CAS  Google Scholar 

  • Lei LC, Li XJ, Zhang XW (2008) Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Sep Purif Technol 58:359–366

    Article  CAS  Google Scholar 

  • Liu Y, Kwag JH, Kim JH, Ra C (2011) Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater. Desalination 277:364–369

    Article  CAS  Google Scholar 

  • Nakakubo T, Tokai A, Ohno K (2012) Comparative assessment of technological systems for recycling sludge and food waste aimed at greenhouse gas emissions reduction and phosphorus recovery. J Clean Prod 32:157–172

    Article  CAS  Google Scholar 

  • Romero-Guiza MS, Astals S, Chimenos JM, Martinez M, Mata-Alvarez J (2014) Improving anaerobic digestion of pig manure by adding in the same reactor a stabilizing agent formulated with low-grade magnesium oxide. Biomass and Bioenergy 67:243–251

    Article  CAS  Google Scholar 

  • Ruiz-Hitzky E, Aranda P, Álvarez A, Santarén J, Esteban-Cubillo A (2011) Chapter 17 - Advanced materials and new applications of sepiolite and palygorskite. In: Emilio G, Arieh S (eds) Developments in Clay Science. Elsevier, p 393–452

  • Ryu HD, Lim CS, Kim YK, Kim KY, Lee SI (2012) Recovery of struvite obtained from semiconductor wastewater and reuse as a slow-release fertilizer. Environ Eng Sci 29:540–548

    Article  CAS  Google Scholar 

  • Seckler MM, Bruinsma OSL, Van Rosmalen GM (1996) Calcium phosphate precipitation in a fluidized bed in relation to process conditions: a black box approach. Water Res 30:1677–1685

    Article  CAS  Google Scholar 

  • Shih Y-J, Abarca RRM, de Luna MDG, Huang Y-H, Lu M-C (2017) Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: effects of pH, phosphate concentration and coexisting ions. Chemosphere 173:466–473

    Article  CAS  Google Scholar 

  • Shuali U, Nir S, Rytwo G (2011) Chapter 15 - Adsorption of surfactants, dyes and cationic herbicides on sepiolite and palygorskite: modifications, applications and modelling. In: Emilio G, Arieh S (eds) Developments in Clay Science. Elsevier, p 351–374

  • Song YH, Hahn HH, Hoffmann E, Weidler PG (2006) Effect of humic substances on the precipitation of calcium phosphate. J Environ Sci 18:852–857

    Article  CAS  Google Scholar 

  • Song Y, Yuan P, Zheng B, Peng J, Yuan F, Gao Y (2007a) Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater. Chemosphere 69:319–324

    Article  CAS  Google Scholar 

  • Song YH, Donnert D, Berg U, Weidler PG, Nueesch R (2007b) Seed selections for crystallization of calcium phosphate for phosphorus recovery. J Environ Sci 19:591–595

    Article  CAS  Google Scholar 

  • Song YH, Dai YR, Hu Q, Yu XH, Qian F (2014) Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater. Chemosphere 101:41–48

    Article  CAS  Google Scholar 

  • Song WL, Li ZP, Liu F, Ding Y, Qi PS, You H, Jin C (2018) Effective removal of ammonia nitrogen from waste seawater using crystal seed enhanced struvite precipitation technology with response surface methodology for process optimization. Environ Sci Pollut Res 25:628–638

    Article  CAS  Google Scholar 

  • Stolzenburg P, Capdevielle A, Teychene S, Biscans B (2015) Struvite precipitation with MgO as a precursor: application to wastewater treatment. Chem Eng Sci 133:9–15

    Article  CAS  Google Scholar 

  • Su C-C, Dulfo LD, Dalida MLP, Lu M-C (2014) Magnesium phosphate crystallization in a fluidized-bed reactor: effects of pH, Mg:P molar ratio and seed. Sep Purif Technol 125:90–96

    Article  CAS  Google Scholar 

  • Sun Z, Qu X, Wang G, Zheng S, Frost RL (2015) Removal characteristics of ammonium nitrogen from wastewater by modified Ca-bentonites. Appl Clay Sci 107:46–51

    Article  CAS  Google Scholar 

  • Taddeo R, Kolppo K, Lepistö R (2016) Sustainable nutrients recovery and recycling by optimizing the chemical addition sequence for struvite precipitation from raw swine slurries. J Environ Manag 180:52–58

    Article  CAS  Google Scholar 

  • Uludag-Demirer S, Demirer GN, Frear C, Chen S (2008) Anaerobic digestion of dairy manure with enhanced ammonia removal. J Environ Manag 86:193–200

    Article  CAS  Google Scholar 

  • Van Der Houwen JAM, Valsami-Jones E (2001) The application of calcium phosphate precipitation chemistry to phosphorus recovery: the influence of organic ligands. Environ Technol 22:1325–1335

    Article  Google Scholar 

  • Venkatesha TG, Nayaka YA, Chethana BK (2013) Adsorption of Ponceau S from aqueous solution by MgO nanoparticles. Appl Surf Sci 276:620–627

    Article  CAS  Google Scholar 

  • Wang H, Wang X, Xia P, Song J, Ma R, Jing H, Zhang Z, Cheng X, Zhao J (2017) Eco-friendly synthesis of self-existed magnesium oxide supported nanorod-like palygorskite for enhanced and simultaneous recovery of nutrients from simulated wastewater through adsorption and in-situ struvite formation. Appl Clay Sci 135:418–426

    Article  CAS  Google Scholar 

  • Weast RC (1990) Handbook of Chemistry and Physics. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Wilsenach JA, Schuurbiers CAH, van Loosdrecht MCM (2007) Phosphate and potassium recovery from source separated urine through struvite precipitation. Water Res 41:458–466

    Article  CAS  Google Scholar 

  • Yin HB, Kong M (2014) Simultaneous removal of ammonium and phosphate from eutrophic waters using natural calcium-rich attapulgite-based versatile adsorbent. Desalination 351:128–137

    Article  CAS  Google Scholar 

  • Yu RT, Ren HQ, Wang YR, Ding LL, Geng JJ, Xu K, Zhang Y (2013) A kinetic study of struvite precipitation recycling technology with NaOH/Mg(OH)(2) addition. Bioresour Technol 143:519–524

    Article  CAS  Google Scholar 

  • Yu RT, Ren HQ, Wu JC, Zhang XX (2017) A novel treatment processes of struvite with pretreated magnesite as a source of low-cost magnesium. Environ Sci Pollut Res 24:22204–22213

    Article  CAS  Google Scholar 

  • Zhou H, Murray HH (2011) Chapter 10 - Overview of Chinese palygorskite clay resources—their geology, mineralogy, depositional environment, applications and processing. In: Emilio G, Arieh S (eds) Developments in Clay Science. Elsevier, p 239–263

  • Zhou Z, Hu L, Ren WC, Zhao YZ, Jiang LM, Wang LC (2015) Effect of humic substances on phosphorus removal by struvite precipitation. Chemosphere 141:94–99

    Article  CAS  Google Scholar 

Download references

Funding

The authors wish to acknowledge the supporting of the National Natural Science Foundation of China (No. 41571301, No. 21777120, and No. 51678421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejiang Wang.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.22 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, X. & Zhao, J. Application of MgO-modified palygorskite for nutrient recovery from swine wastewater: effect of pH, ions, and organic acids. Environ Sci Pollut Res 26, 19729–19737 (2019). https://doi.org/10.1007/s11356-019-05254-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05254-3

Keywords

Navigation