Effects of microwave, H2O2/MW and H2O2/heat pre-treatments on the methane production from wastewater sludges: experimental and modeling approach

Abstract

The wastewater sludge stabilization by anaerobic digestion is sufficient to reduce the organic content of the sludge, so that it can be safely disposed of without causing odor problems and pathogen contamination, while producing energy in form of biogas. Efficiency of anaerobic digestion in terms of biogas/methane production and organic removal can be enhanced by pretreating the sludge prior to anaerobic digestion. This study compares the effects of microwave (MW), combined hydrogen peroxide/microwave (H2O2/MW), and combined hydrogen peroxide/heat (H2O2/heat) pre-treatments on the digestion efficiency and methane production potential of wastewater sludges. The methane productions were also estimated by using modified Gompertz equation through the calculation of the kinetic parameters. The pre-treatments applied to sludge samples speeded up the hydrolysis step and improved the biodegradability of the organics by increasing their solubility. Application of MW, combined H2O2/MW, and combined H2O2/heat pre-treatments increased the methane yields by 64%, 38%, and 19%. The modified Gompertz model fitted well to the experimental results (R2 of 0.999, 0.983, 0.997, and 0.998 for control, MW, H2O2/MW, and H2O2/heat, respectively).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abudi ZN, Hu Z, Xiao B, Abood AR, Rajaa N, Laghari M (2016) Effects of pretreatments on thickened waste activated sludge and rice straw co-digestion: experimental and modeling study. J Environ Manag 177:213–222. https://doi.org/10.1016/J.JENVMAN.2016.04.028

    CAS  Article  Google Scholar 

  2. Ahn J-H, Shin SG, Hwang S (2009) Effect of microwave irradiation on the disintegration and acidogenesis of municipal secondary sludge. Chem Eng J 153(1):145–150. https://doi.org/10.1016/j.cej.2009.06.032

    CAS  Article  Google Scholar 

  3. Alagöz AB, Yenigün O, Erdinçler A (2015) Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment. Waste Manag 46:182–188. https://doi.org/10.1016/J.WASMAN.2015.08.020

    Article  Google Scholar 

  4. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59(5):927. https://doi.org/10.2166/wst.2009.040

    CAS  Article  Google Scholar 

  5. APHA (2012) SMWW: standard methods for the examination of water and wastewater (22nd Edition). American Public Health Association, American Water Works Association, Water Environment Federation. Retrieved from https://www.standardmethods.org/. Accessed 4 Feb 2019

  6. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34(6):755–781. https://doi.org/10.1016/j.pecs.2008.06.002

    CAS  Article  Google Scholar 

  7. Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 123:143–156. https://doi.org/10.1016/j.apenergy.2014.02.035

    CAS  Article  Google Scholar 

  8. Bilgin Oncu N, Akmehmet Balcioglu I (2013) Microwave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilization. Bioresour Technol 146:126–134. https://doi.org/10.1016/j.biortech.2013.07.043

    CAS  Article  Google Scholar 

  9. Bougrier C, Albasi C, Delgenès JP, Carrère H (2006) Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem Eng Process Process Intensif 45(8):711–718. https://doi.org/10.1016/J.CEP.2006.02.005

    CAS  Article  Google Scholar 

  10. Budiyono, Syaichurrozi I, Sumardiono S (2014) Kinetic model of biogas yield production from vinasse at various initial pH: comparison between modified Gompertz model and first order kinetic model. Res J Appl Sci Eng Technol 7(13):2798–2805. https://doi.org/10.19026/rjaset.7.602

    CAS  Article  Google Scholar 

  11. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    CAS  Article  Google Scholar 

  12. Climent M, Ferrer I, Baeza M d M, Artola A, Vázquez F, Font X (2007) Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chem Eng J 133(1):335–342. https://doi.org/10.1016/j.cej.2007.02.020

    CAS  Article  Google Scholar 

  13. Córdoba V, Fernández M, Santalla E (2018) The effect of substrate/inoculum ratio on the kinetics of methane production in swine wastewater anaerobic digestion. Environ Sci Pollut Res 25(22):21308–21317. https://doi.org/10.1007/s11356-017-0039-6

    CAS  Article  Google Scholar 

  14. Eskicioglu C, Terzian N, Kennedy KJ, Droste RL, Hamoda M (2007) Athermal microwave effects for enhancing digestibility of waste activated sludge. Water Res 41(11):2457–2466. https://doi.org/10.1016/j.watres.2007.03.008

    CAS  Article  Google Scholar 

  15. Eskicioglu C, Kennedy KJ, Droste RL (2008a) Initial examination of microwave pretreatment on primary, secondary and mixed sludges before and after anaerobic digestion. Water Sci Technol 57(3):311. https://doi.org/10.2166/wst.2008.010

    CAS  Article  Google Scholar 

  16. Eskicioglu C, Prorot A, Marin J, Droste RL, Kennedy KJ (2008b) Synergetic pretreatment of sewage sludge by microwave irradiation in presence of H2O2 for enhanced anaerobic digestion. Water Res 42(18):4674–4682. https://doi.org/10.1016/J.WATRES.2008.08.010

    CAS  Article  Google Scholar 

  17. Eswari P, Kavitha S, Kaliappan S, Yeom I-T, Banu JR (2016) Enhancement of sludge anaerobic biodegradability by combined microwave-H2O2 pretreatment in acidic conditions. Environ Sci Pollut Res 23(13):13467–13479. https://doi.org/10.1007/s11356-016-6543-2

    CAS  Article  Google Scholar 

  18. Feki E, Khoufi S, Loukil S, Sayadi S (2015) Improvement of anaerobic digestion of waste-activated sludge by using H2O2 oxidation, electrolysis, electro-oxidation and thermo-alkaline pretreatments. Environ Sci Pollut Res 22(19):14717–14726. https://doi.org/10.1007/s11356-015-4677-2

    CAS  Article  Google Scholar 

  19. Franke-Whittle IH, Walter A, Ebner C, Insam H (2014) Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag 34(11):2080–2089. https://doi.org/10.1016/j.wasman.2014.07.020

    CAS  Article  Google Scholar 

  20. Fricke K, Santen H, Wallmann R, Hüttner A, Dichtl N (2007) Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Manag 27(1):30–43. https://doi.org/10.1016/j.wasman.2006.03.003

    CAS  Article  Google Scholar 

  21. Ghatak MD, Mahanta P (2014) Comparıson of kinetic models for biogas production rate from saw dust. IJRET: International Journal of Research in Engineering and Technology. Retrieved from http://www.ijret.org

  22. Ghatak M, Mahanta P (2017) Kinetic model development for biogas production from lignocellulosic biomass. IJTech 8(4):673. https://doi.org/10.14716/ijtech.v8i4.9491

    Article  Google Scholar 

  23. Hannmann L, Powers K, Shepherd O, Taylor H (2012) Removal of ciprofloxacin from water with chemical oxidation. Worcester Polytechnic Institute (WPI), Worcester, MA

  24. Jung H, Kim J, Lee S, Lee C (2014) Effect of mild-temperature H 2 O 2 oxidation on solubilization and anaerobic digestion of waste activated sludge. Environ Technol 35(13):1702–1709. https://doi.org/10.1080/09593330.2014.880517

    CAS  Article  Google Scholar 

  25. Kim T-H, Lee S-R, Nam Y-K, Yang J, Park C, Lee M (2009) Disintegration of excess activated sludge by hydrogen peroxide oxidation. Desalination 246(1):275–284. https://doi.org/10.1016/j.desal.2008.06.023

    CAS  Article  Google Scholar 

  26. Koster IW, Lettinga G (1984) The influence of ammonium-nitrogen on the specific activity of pelletized methanogenic sludge. Agricultural Wastes 9(3):205–216. https://doi.org/10.1016/0141-4607(84)90080-5

    CAS  Article  Google Scholar 

  27. Kuglarz M, Karakashev D, Angelidaki I (2013) Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants. Bioresour Technol 134:290–297. https://doi.org/10.1016/J.BIORTECH.2013.02.001

    CAS  Article  Google Scholar 

  28. Lastella G, Testa C, Cornacchia G, Notornicola M, Voltasio F, Sharma VK (2002) Anaerobic digestion of semi-solid organic waste: biogas production and its purification. Energy Convers Manag 43(1):63–75. https://doi.org/10.1016/S0196-8904(01)00011-5

    CAS  Article  Google Scholar 

  29. Lee D-J, Lee S-Y, Bae J-S, Kang J-G, Kim K-H, Rhee S-S, Seo D-C (2015) Effect of volatile fatty acid concentration on anaerobic degradation rate from field anaerobic digestion facilities treating food waste leachate in South Korea. Journal of Chemistry 2015:1–9. https://doi.org/10.1155/2015/640717

    CAS  Article  Google Scholar 

  30. Li Y, Zhang R, Liu X, Chen C, Xiao X, Feng L, Liu G (2013) Evaluating methane production from anaerobic mono- and co-digestion of kitchen waste, corn stover, and chicken manure. Energy Fuel 27(4):2085–2091. https://doi.org/10.1021/ef400117f

    CAS  Article  Google Scholar 

  31. Li L, Chen C, Zhang R, He Y, Wang W, Liu G (2015) Pretreatment of corn stover for methane production with the combination of potassium hydroxide and calcium hydroxide. Energy Fuel 29:5841–5846. https://doi.org/10.1021/acs.energyfuels.5b01170

    CAS  Article  Google Scholar 

  32. Li W, Siddhu MAH, Amin FR, He Y, Zhang R, Liu G, Chen C (2018) Methane production through anaerobic co-digestion of sheep dung and waste paper. Energy Convers Manag 156:279–287. https://doi.org/10.1016/J.ENCONMAN.2017.08.002

    Article  Google Scholar 

  33. Liu J, Jia R, Wang Y, Wei Y, Zhang J, Wang R, Cai X (2015) Does residual H 2 O 2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H 2 O 2 pretreatment process? Environ Sci Pollut Res. https://doi.org/10.1007/s11356-015-5704-z

    Article  Google Scholar 

  34. Liu J, Yu D, Zhang J, Yang M, Wang Y, Wei Y, Tong J (2016) Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment. Water Res 98:98–108. https://doi.org/10.1016/J.WATRES.2016.03.073

    CAS  Article  Google Scholar 

  35. Matheri AN, Belaid M, Seodigeng T, Ngila CJ (2016) Modelling the kinetic of biogas production from co-digestion of pig waste and grass clippings. In Proceedings of the World Congress on Engineering 2016 Vol II (WCE 2016). Retrieved from http://www.iaeng.org/publication/WCE2016/WCE2016_pp813-820.pdf. Accessed 8 Nov 2018

  36. Mercan N (2015) Fate of micropollutants during the advanced treatment of sewage sludge: degradation of triclosan, ciprofloxacin, and oxytetracycline. M.Sc. Thesis, Bogazici University

  37. Mudhoo A, Sanjay, Sharma K, Sharma SK (2011) Microwave irradiation technology in waste sludge and wastewater treatment research. Crit Rev Environ Sci Technol 41(11):999–1066. https://doi.org/10.1080/10643380903392767

    CAS  Article  Google Scholar 

  38. Neyens E, Baeyens J (2003) A review of thermal sludge pre-treatment processes to improve dewaterability. J Hazard Mater 98(1):51–67. https://doi.org/10.1016/S0304-3894(02)00320-5

    CAS  Article  Google Scholar 

  39. Normand MD, Peleg M (2014) Lag time in microbial growth - Wolfram Demonstrations Project. Retrieved from http://demonstrations.wolfram.com/LagTimeInMicrobialGrowth/. Accessed 6 Mar 2019

  40. Owen WF, Stuckey DC, Healy JB, Young LY, McCarty PL (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13(6):485–492. https://doi.org/10.1016/0043-1354(79)90043-5

    CAS  Article  Google Scholar 

  41. Priadi C, Wulandari D, Rahmatika I, Moersidik SS (2014) Biogas production in the anaerobic digestion of paper sludge. APCBEE Procedia 9(Icbee 2013):65–69. https://doi.org/10.1016/j.apcbee.2014.01.012

    CAS  Article  Google Scholar 

  42. Raposo F, De la Rubia MA, Fernández-Cegrí V, Borja R (2012) Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sust Energ Rev 16(1):861–877. https://doi.org/10.1016/j.rser.2011.09.008

    CAS  Article  Google Scholar 

  43. Shahriari H, Warith M, Hamoda M, Kennedy KJ (2012) Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Manag 32(1):41–52. https://doi.org/10.1016/J.WASMAN.2011.08.012

    CAS  Article  Google Scholar 

  44. Siegert I, Banks C (2005) The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem 40(11):3412–3418. https://doi.org/10.1016/J.PROCBIO.2005.01.025

    CAS  Article  Google Scholar 

  45. Song Z, Yag G, Feng Y, Ren G, Han X (2013) Pretreatment of rice straw by hydrogen peroxide for enhanced methane yield. J Integr Agric 12(7):1258–1266. https://doi.org/10.1016/S2095-3119(13)60355-X

    Article  Google Scholar 

  46. Syaichurrozi I, Sumardiono S (2013) Predicting kinetic model of biogas production and biodegradability organic materials: biogas production from vinasse at variation of COD/N ratio. Bioresour Technol 149:390–397. https://doi.org/10.1016/j.biortech.2013.09.088

    CAS  Article  Google Scholar 

  47. Tsapekos P, Kougias PG, Vasileiou SA, Treu L, Campanaro S, Lyberatos G, Angelidaki I (2017) Bioaugmentation with hydrolytic microbes to improve the anaerobic biodegradability of lignocellulosic agricultural residues. Bioresour Technol 234:350–359. https://doi.org/10.1016/j.biortech.2017.03.043

    CAS  Article  Google Scholar 

  48. TUBITAK-KAMAG (2013) Project report of management of domestic/urban wastewater sludges in Turkey (108G167). Turkey, Istanbul

    Google Scholar 

  49. Turovskiy IS, Mathai PK (2006) Wastewater sludge processing. John Wiley & Sons, Inc. Publication, Wiley-Interscience, Hoboken. Retrieved from http://www.wiley.com/go/permission. Accessed 18 Nov 2017

  50. Tyagi VK, Lo S-L (2011) Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review. Rev Environ Sci Biotechnol 10(3):215–242. https://doi.org/10.1007/s11157-011-9244-9

    CAS  Article  Google Scholar 

  51. Tyagi VK, Lo S-L (2013) Microwave irradiation: a sustainable way for sludge treatment and resource recovery. Renew Sust Energ Rev 18:288–305. https://doi.org/10.1016/J.RSER.2012.10.032

    CAS  Article  Google Scholar 

  52. Valo A, Carrère H, Delgenès JP (2004) Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion. J Chem Technol Biotechnol 79(11):1197–1203. https://doi.org/10.1002/jctb.1106

    CAS  Article  Google Scholar 

  53. Wang Y, Wei Y, Liu J (2009) Effect of H2O2 dosing strategy on sludge pretreatment by microwave-H 2 O 2 advanced oxidation process. J Hazard Mater 169:680–684. https://doi.org/10.1016/j.jhazmat.2009.04.001

    CAS  Article  Google Scholar 

  54. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860. https://doi.org/10.1007/s00253-009-2246-7

    CAS  Article  Google Scholar 

  55. Wong WT, Chan WI, Liao PH, Lo KV (2006) A hydrogen peroxide/ microwave advanced oxidation process for sewage sludge treatment. J Environ Sci Health A Tox Hazard Subst Environ Eng 41(11):2623–2633. https://doi.org/10.1080/10934520600928086

    CAS  Article  Google Scholar 

  56. Wu-Haan, W. (2008) Evaluation of ultrasonic pretreatment on anaerobic digestion of biomass for methane production.M.Sc. Thesis, Iowa State University. Retrieved from http://lib.dr.iastate.edu/etd. Accessed 18 Dec 2016

  57. Yin G, Liao PH, Lo KV (2007) An ozone/hydrogen peroxide/microwave-enhanced advanced oxidation process for sewage sludge treatment. Journal of Environmental Science and Health Part A 42:1177–1181. https://doi.org/10.1080/10934520701418706

    CAS  Article  Google Scholar 

  58. Yusuf MOL, Debora A, Ogheneruona DE (2011) Ambient temperature kinetic assessment of biogas production from co-digestion of horse and cow dung. Res Agr Eng 57(3):97–104. Retrieved from https://www.agriculturejournals.cz/publicFiles/47422.pdf. Accessed 19 Oct 2018

    Article  Google Scholar 

  59. Zhang H, Ning Z, Khalid H, Zhang R, Liu G, Chen C (2018) Enhancement of methane production from cotton stalk using different pretreatment techniques. Sci Rep 8(1):3463. https://doi.org/10.1038/s41598-018-21413-x

    CAS  Article  Google Scholar 

  60. Zwietering MH, Jongenburger I, Rombouts FM, Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56(6):1875–1881. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC184525/pdf/aem00087-0379.pdf. Accessed 19 Oct 2018

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ece Özön.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Vítor Pais Vilar

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Özön, E., Erdinçler, A. Effects of microwave, H2O2/MW and H2O2/heat pre-treatments on the methane production from wastewater sludges: experimental and modeling approach. Environ Sci Pollut Res 26, 35411–35421 (2019). https://doi.org/10.1007/s11356-019-05190-2

Download citation

Keywords

  • Anaerobic digestion
  • Hydrogen peroxide pre-treatment
  • Microwave irradiation
  • Methane production
  • Modified Gompertz model