Skip to main content
Log in

Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The toxic impacts of CuO nanoparticles (NPs) on the marine phytoplankton Nannochloropsis oculata were evaluated by measuring a number of biological parameters. Exposure to different concentrations of CuO-NPs (5–200 mg/L) significantly decreased the growth and content of chlorophyll a of N. oculata. The results showed that CuO-NPs were toxic to this microalga with a half maximal effective concentration (EC50) of 116.981 mg/L. Exposure to CuO-NPs increased the hydrogen peroxide (H2O2) content and induced the membrane damages. Moreover, the concentration of phenolic compounds was increased, while the levels of carotenoids were markedly decreased in comparison to the control sample. The activity of catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO) and lactate dehydrogenase (LDH) enzymes significantly was increased in response to CuO-NPs treatments. These results indicated that CuO-NPs stimulated the antioxidant defense system in N. oculata to protect the cells against the oxidative damages. The Fourier-transform infrared spectroscopy (FTIR) analyses showed that the main functional groups (C=O and C–O–C) interacted with CuO-NPs. The images of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the cell membrane damage and the change of cell wall structure which may be contributed to the nanotoxicity. These findings may provide additional insights into the mechanisms of cytotoxicity induced by CuO-NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd El-Baky HH, El Baz FK, El-Baroty GS (2004) Production of antioxidant by the green alga Dunaliella salina. Int J Agric Biol 6(1):49–57

    CAS  Google Scholar 

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  • Ates M, Arslan Z, Demir V, Daniels J, Farah IO (2015) Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus). Environ Toxicol 30(1):119–128

    Article  CAS  Google Scholar 

  • Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against grame-positive and –negative bacterial strains. Int J Nanomedicine:3527–3535

  • Bao Sh LQ, Fang T, Dai H, Zhang C (2015) Assessment of the toxicity of CuO nanoparticles by using Saccharomyces cerevisiae mutants with multiple genes deleted. Appl Environ Microbiol 81(23):8098–8107

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantisation of microgaram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–257

    Article  CAS  Google Scholar 

  • Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850–2871

    Article  CAS  Google Scholar 

  • Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Article  CAS  Google Scholar 

  • Chen P, Powell BA, Mortimer M, Ke PC (2012a) Adaptive interactions between zinc oxide nanoparticles and Chlorella Sp. Environ Sci Technol 46:12178–12185

    Article  CAS  Google Scholar 

  • Chen LZ, Zhou LN, Liu YD, Deng SQ, Wu H, Wang GH (2012b) Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotoxicol Environ Saf 84:155–162

    Article  CAS  Google Scholar 

  • Comotto M, Casazza AA, Aliakbarian B, Caratto V, Ferretti M, Perego P (2014) Influence of TiO2 nanoparticles on growth and phenolic compounds production in photosynthetic microorganisms. Sci World J:1–9

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Dawes IW (2000) Response of eukaryotic cells to oxidative stress. Agric Chem Biotechnol 43:211–217

    CAS  Google Scholar 

  • Dehindsa RS, Plumb-Dehindsa P, Torne TA (1981) Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  Google Scholar 

  • Demir V, Ates M, Arslan Z, Camas M, Celik F, Bogatu C, Can SS (2015) Influence of alpha and gamma-iron oxide nannoparticles on marine microalgae species. Bull Environ Contam Toxicol 95(6):752–757

    Article  CAS  Google Scholar 

  • Doosti MH, Ahmadi K, Fasihi-Ramandi M (2017) The effect of ethanolic extract of Thymus kotschyanus on cancer cell growth in vitro and depression-like behavior in the mouse. J Tradit Complement Med:1–6

  • Durmaz Y (2007) Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 272:717–722

    Article  CAS  Google Scholar 

  • Duygu DY, Udoh AU, Ozer TB, Akbulut A, Acikgoz I, Yildiz K, Guler D (2012) Fourier transforms infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (turpin) Kutzing 1833. Afr J Biotechnol 11(16):3817–3824

    CAS  Google Scholar 

  • Fahmy B, Cormier SA (2009) Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol in Vitro 23:1365–1371

    Article  CAS  Google Scholar 

  • Foyer CH, Looez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in Zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186

    Article  CAS  Google Scholar 

  • Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM (2016) Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals (Basel) 9(4):75

    Article  CAS  Google Scholar 

  • Guillard RL, Ryther JH (1962) Studies of marine planktonic diatoms.I. Cyclotella nana Hustedt and Detonula confervacea (Cleve). Can. J Microbiol 8:229–239

    CAS  Google Scholar 

  • Gunawan C, Teoh WY, Marquis CP, Amal R (2011) Cytotoxic origin of copper (II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 5:7214–7225

    Article  CAS  Google Scholar 

  • Hadjoudja S, Deluchat V, Baudu M (2010) Cell surface characterization of Microcystis aeruginosa and Chlorella vulgaris. J Colloid Interface Sci 342:293–299

    Article  CAS  Google Scholar 

  • Hameda SM, Selim S, Klöckd G, AbdElgawade H (2017) Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analysis. Ecotoxicol Environ Saf 144:19–25

    Article  CAS  Google Scholar 

  • He M, Yan Y, Pei F, Wu M, Gebreluel T, Zou S, Wang C (2017) Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Sci Rep 7:15526–15538

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast, kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier HC (2010) Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. Water Res 45:179–190

    Article  CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  CAS  Google Scholar 

  • Hurt RH, Monthioux M, Kane A (2006) Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon 44:1028–1033

    Article  CAS  Google Scholar 

  • Jahangir M, Kim HK, Choi YH, Verpoort R (2009) Health -Affecting compounds in Brasicaceae. Compr Rev Food Sci Food Saf 8:31–43

    Article  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  CAS  Google Scholar 

  • Jovanović P, Žoric L, Stefanović I, Dźunić B, Bjordjević-jocić J, Radenković M, Jovanović M (2010) Lactate dehydrogenase and oxidative stress activity in primary open-angle glaucoma aqueous humor. Bosn J Basic Med Sci 10(1):83–88

    Article  Google Scholar 

  • Kanti Das T, Rina Wati M, Fatima-Shad K (2014) Oxidative stress gated by Fenton and Harber Weiss reactions and its association with Alzheimer, s disease. Arch Neurosci 2(3):1–8

    Article  Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase, polyphenol oxidase activities during rice leaf senescence. Plant Physiol 57:315–319

    Article  CAS  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier HC, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO, TiO2 to yeast Saccharomyces cerevisiae. Toxicol in Vitro 23:1116–1122

    Article  CAS  Google Scholar 

  • Kim KN, Cha SH, Kim EA, Kang MCH, Yang HM, Kim MJ, Jung WK, Heo SJ, Kim D, Yang HY, Roh SW, Jeon YJ, Oda T (2012) Neuroprotective effects of Nannochloropsis oculata against AAPH-induced oxidative DNA damage in HT22 cells. Int J Pharmacol 8(6):527–534

    Article  Google Scholar 

  • Kulbat K (2016) The role of phenolic compounds in plant resistance. Food Sci Biotechnol 80(2):97–108

    Google Scholar 

  • Machu L, Misurcova L, Ambrozova JV, Orsavova J, Micek J, Sochor J, Jurikova T (2015) Phenolic contents and antioxidant capacity in algal food products. Molecules 20:1118–1133

    Article  CAS  Google Scholar 

  • Marslin G, Sheeba CJ, Franklin G (2017) Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci 8:1–8

    Article  Google Scholar 

  • Melegari SP, Perreault F, Costa RHR, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 142-143:431–440

    Article  CAS  Google Scholar 

  • Metzler DM, Li M, Erdem A, Huang C (2011) Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chem Eng J 170(2-3):538–546

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance (review). Trends Plant Sci 7(9):405–410

    Article  CAS  Google Scholar 

  • Mohammed Sadiq I, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74:1180–1187

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 16(65):55–63

    Article  Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgae strains for sustainable biofuel production. Bioresour Technol 102:57–70

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1989) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    Google Scholar 

  • Nations SH, Wages M, Canas JE, Maul J, Theodorakis CH, Cobb GP (2011) Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere 83:1053–1061

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas retnhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  Google Scholar 

  • OECD (1984) OECD guideline for testing of chemicals. Alga, growth inhibition test. OECD, Paris, pp 1–14

  • Peng C, Ma Y, Ding Y, He X, Zhang P, Lan T, Wang D, Zhang Z, Zhang Z (2017) Influence of speciation of thorium on toxic effects to green algae Chlorella pyrenoidosa. Int J Mol Sci 18:795–805

    Article  CAS  Google Scholar 

  • Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R (2012) Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 87:1388–1394

    Article  CAS  Google Scholar 

  • Perreault F, Oukarroum A, Pirastru L, Sirois L, Gerson Matias W, Popovic R (2010) Evaluation of copper oxide nanoparticles toxicity using chlorophyll a fluorescence imaging in Lemna gibba. J Bot 2010:1–9

    Article  CAS  Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Pisanic II TR, Jin S, Shubayev VI (2009) Iron oxide magnetic nanoparticle nanotoxicity: Incidence and mechanisms. In: Nanotoxicity. From in vivo and in vitro models to health risk. John Wiley & Sons, London, pp 397–425

  • Ruiz JM, Rivero RM, López-Cantarero I, Romero L (2003) Role of Ca2+ in the metabolism of phenolic compounds in tobacco leaves (Nicotiana tabacum L.). Plant Growth Regul 41:173–177

    Article  CAS  Google Scholar 

  • Salguero AM, Morena BA, Vigara AJ, Vega JM (2003) Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomol Eng 20:249–253

    Article  CAS  Google Scholar 

  • Sarvajeet SG, Narendera T (2010) Reactive oxygen species and antioxidant machinery in a biotic stress tolerance in crop plants. Annual Review. Plant Physiol Biochem 3:1–22

    Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Song Y, Zhu L, Wang S, Wang J, Liu JH, Xie H (2008) DNA damage and effects on antioxidative enzymes in erthworm (Eisenia fetida) induced by atrazine. Soil Biol Biochem 41:905–909

    Article  CAS  Google Scholar 

  • Sukarni S, Hamidi N, Yanuhar U, Wardana ING (2014) Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere. J Front Energy 9:125–133

    Article  Google Scholar 

  • Suman TY, Radhika Rajasree SR, Kirubagaran R (2015) Evaluation of Zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf 113:23–30

    Article  CAS  Google Scholar 

  • Thypiapong P, Stout MJ, Attajarusit J (2007) Functional analysis of polyphenol oxidases by antisense/sense technology. Molecules 12:1569–1595

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wahab R, Ansari SG, Kim YS, Dar MA, Shin HS (2008) Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles. J Alloys Compd 461:66–71

    Article  CAS  Google Scholar 

  • Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040

    Article  CAS  Google Scholar 

  • Wang L, Wang M, Peng C, Pan J (2013) Toxic effects of nano-CuO, micro-CuO and Cu2+ on Chlorella sp. J Environ Prot 4:86–91

    Article  CAS  Google Scholar 

  • Wang Y, Zhu X, Lao Y, Lv X, Tao Y, Huang B, Wang J, Zhou J, Cai Z (2016) TiO2 nanoparticles in the marine environment: physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Sci Total Environ:1–9

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C-3. EMBO J 16:4806–4816

    Article  CAS  Google Scholar 

  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam CR, Liu S, Pokhrel S, Lin X, Wang YP, Liao M, Wang L, Li L, Rallo R, Damoiseaux R, Telesca D, Mädler L, Cohen Y (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5):4349–4368

    Article  CAS  Google Scholar 

  • Zhao J, Cao X, Liu X, Wang Z, Zhang C, White JC, Xing B (2016) Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake and toxicity. Nanotoxicology 10:1–31

    Google Scholar 

  • Zhu ZJ, Carboni R, Quercio MJ, Yan B, Miranda OR, Anderton DL, Arcaro KF, Rotello VM, Vachet RW (2010) Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small 6:2261–2265

    Article  CAS  Google Scholar 

  • Zhu Y, Zhang Y, Shi G, Yang J, Zhang J, Li W, Li A, Tai R, Fang H, Fan C, Huang Q (2015) Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. Part Fibre Toxicol 12(2):1–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Yousefzadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazelian, N., Movafeghi, A., Yousefzadi, M. et al. Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. Environ Sci Pollut Res 26, 17499–17511 (2019). https://doi.org/10.1007/s11356-019-05130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05130-0

Keywords

Navigation