Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 17, pp 17110–17120 | Cite as

Assessment of the structural reorganization of liver and biochemical parameters of blood serum after introduction of zinc nanoparticles and its oxides

  • Elena SizovaEmail author
  • Sergey Miroshnikov
  • Xenia Nechitailo
Research Article
  • 65 Downloads

Abstract

The demand for nanoparticles of metals and their oxides in medicine and biology is indisputable. To ensure the safe use of the unique capabilities of nanostructures, in particular, essential metals and their oxides, and to further search for ways leveling side effects of toxic effects in biomedical applications, a multifaceted approach to the study of their properties is needed, primarily affecting the effects on the organism level. In this connection, the purpose of the present research was to study the effect of zinc nanoparticles (ZnNPs) and zinc oxide nanoparticles (ZnONPs) on structural reorganization of the liver and morpho-biochemical parameters of rat blood. The test substances exhibit a hepatotoxic effect upon their single intraperitoneal administration to rats. In the experiment, increased activity of gamma glutamyltransferase (GGT) and lactate dehydrogenase (LDH), increased expression of caspase-3, the presence of signs of oxidative stress, inflammation, and capillary-trophic insufficiency, and induction of tumor necrosis factor (TNF-α), and colony stimulating factor 2 (granulocyte-macrophage) (GM-CSF) were registered in the experiment. The level of interferon-γ in the experimental groups tended to decrease in comparison with the control group. The observed effects progressed in time, most noticeably manifested in the case of ZnONPs. Comparing the dosages, ZnNPs are less toxic than ZnONPs.

Keywords

Nanoparticles Zinc Apoptosis Oxidative stress Blood serum Liver Elemental composition Rats 

Notes

Acknowledgements

Research was done with financial support of the Russian Science Foundation # 14-16-00060-P.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Amara S, Slama IB, Mrad I, Rihane N, Khemissi W, El Mir L, Rhouma KB, Abdelmelek H, Sakly M (2014) Effects of zinc oxide nanoparticles and/or zinc chloride on biochemical parameters and mineral levels in rat liver and kidney. Hum Exp Toxicol 33(11):1150–1157.  https://doi.org/10.1177/0960327113510327 Google Scholar
  2. Arsenteva IP, Zotova ES, Folmanist GE, Glushchenko NN, Baytukalov TA, Olkhovskaya IP, Bogoslovskaya OA, Baldokhin YV, Dzidziguri EL, Sidorov EN (2007) Certification of metal nanoparticles used as biologically active preparations. Nanotechnics 10:72–77Google Scholar
  3. Asadi F, Mohseni M, Dadashi Noshahr K, Soleymani FH, Jalilvand A, Heidari A (2016) Effect of molybdenum nanoparticles on blood cells, liver enzymes, and sexual hormones in male rats. Biol Trace Elem Res:1–7.  https://doi.org/10.1007/s12011-016-0765-5
  4. Asri-Rezaei S, Dalir-Naghadeh B, Nazarizadeh A, Noori-Sabzikar Z (2017) Comparative study of cardio-protective effects of zinc oxide nanoparticles and zinc sulfate in streptozotocin-induced diabetic rats. J Trace Elem Med Biol 42:129–141.  https://doi.org/10.1016/j.jtemb.2017.04.013 Google Scholar
  5. Buerki-Thurnherr T, Xiao L, Diener L, Arslan O, Hirsch C, Maeder-Althaus X, Grieder K, Wampfler B, Mathur S, Wick P, Krug HF (2013) In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology 7(4):402–416.  https://doi.org/10.3109/17435390.2012.666575 Google Scholar
  6. Chatterjee DK, Diagaradjane P, Krishnan S (2011) Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv 2(8):1001–1014Google Scholar
  7. Cuillel M, Chevallet M, Charbonnier P, Fauquant C, Pignot-Paintrand I, Arnaud J, Cassio D, Michaud-Soret I, Mintz E (2014) Interference of CuO nanoparticles with metal homeostasis in hepatocytes under sub-toxic conditions. Nanoscale6(3):1707–1715.  https://doi.org/10.1039/c3nr05041f
  8. Das M, Patil S, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ (2007a) Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28(10):1918–1925.  https://doi.org/10.1016/j.biomaterials.2006.11.036 Google Scholar
  9. Das M, Patil S, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ (2007b) Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28(10):1918–1925.  https://doi.org/10.1016/j.biomaterials.2006.11.036 Google Scholar
  10. Du J, Tang J, Xu S, Ge J, Dong Y, Li H, Jin M (2018) ZnO nanoparticles: recent advances in ecotoxicity and risk assessment. Drug Chem Toxicol. 28:1–12.  https://doi.org/10.1080/01480545.2018.1508218 Google Scholar
  11. Duffin R, Tran L, Brown D, Stone V, Donaldson K (2007) Proinfammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting, the role of particle surface area and surface reactivity. Inhalation Toxicology 19:849–856Google Scholar
  12. Egorova ЕМ (2010) Biological effects of silver nanoparticles. In: «Silver nanoparticles: properties, characterization and applications» (Ed. by Audrey E. Welles). New York: Nova Science Publishers 221–258Google Scholar
  13. Glushchenko NN, Skalny AV (2010) Toxicity Of Zinc Nanoparticles And Its Biological Properties.Actual problems of transport medicine. 2010. No. 3 (21):118–121Google Scholar
  14. Gong Y, Ji Y, Liu F, Li J, Cao Y (2017) Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: interaction with palmitate or lipopolysaccharide. J Appl Toxicol 37(8):895–901.  https://doi.org/10.1002/jat.3415 Google Scholar
  15. Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in Zebrafish (Danio rerio). Environ Sci Technol 41(23):8178–8186Google Scholar
  16. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. 166(3):207–215Google Scholar
  17. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316Google Scholar
  18. Hernández Battez A, González R, Viesca JL et al (2008) CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear. 265(3–4):422–428Google Scholar
  19. Hu X, Cook S, Wang P, Hwang H-M (2009) In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci. Total Environ 407:3070–3072.13Google Scholar
  20. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2(5):681Google Scholar
  21. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983Google Scholar
  22. Jin T, Sun D, Su JY, Zhang H, Sue HJ (2009) Antimicrobial efficacy of zinc oxide quantum dots against listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci. 74(1):M46–M52Google Scholar
  23. Khan HA, Ibrahim KE, Khan A, Alrokayan SH Alhomida AS (2017) Immunostaining of proinflammatory cytokines in renal cortex and medulla of rats exposed to gold nanoparticles. Histol Histopathol 32(6):597–607. doi: 10.14670/HH-11-825.Google Scholar
  24. Kim IS, Baek M, Choi SJ (2010) Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J. Nanosci Nanotechnol 10(5):3453–3458.  https://doi.org/10.1166/jnn.2010.2340 Google Scholar
  25. Kolesnichenko AV, Timofeev MA, Protopopova MV (2008) Toxicity of nanomaterials - 15years of research. Russian Nanotechnologies. 3(3–4):54–61Google Scholar
  26. Linhua H, Lei C (2012) Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicology and Environmental Safety 80:103–110Google Scholar
  27. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles--a review. Environ Pollut. 172:76–85.  https://doi.org/10.1016/j.envpol.2012.08.011 Google Scholar
  28. Ma P, Luo Q, Chen J (2012) Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine 7:4809–4818Google Scholar
  29. Mantovani A, Bussolino F, Introna M (1997) Cytokine regulation of endothelial cell function: from molecular level to the bed side. Immunol Today 18:231–239Google Scholar
  30. Milto IV, Sukhodolo IV (2012) Structural changes in some rat organs after a single intravenous injection of nanosized magnetite. Morphology 141(2):49–53Google Scholar
  31. Nishimori H, Kondoh M, Isodaa K, Tsunoda S, Tsutsumi Y, Yagi K (2009) Silica nanoparticles as hepatotoxicants. Eur J Pharmaceut Biopharmaceut 72(3):496–501Google Scholar
  32. Park HS, Shin SS, Meang EH, Hong JS, Park JI, Kim SH, Koh SB, Lee SY, Jang DH, Lee JY, Sun YS, Kang JS, Kim YR, Kim MK, Jeong J, Lee JK, Son WC, Park JH (2014) A 90-day study of subchronic oral toxicity of 20nm, negatively charged zinc oxide nanoparticles in Sprague Dawley rats. Int J Nanomedicine 2:79–92.  https://doi.org/10.2147/IJN.S57926 Google Scholar
  33. Petrache SN, Stanca L, Serban AI, Sima C, Staicu AC, Munteanu MC, Costache M, Burlacu R, Zarnescu O, Dinischiotu A (2012) Structural and oxidative changes in the kidney of crucian carp induced by silicon-based quantum dots. Int J Mol Sci 13(8):10193–10211.  https://doi.org/10.3390/ijms130810193 Google Scholar
  34. Privalova LI, Katznelson BA, Loginova NV, Gurevich VB, Shur VYA, Beikin YAB, Sutunkova MP, Minigalieva IA, Shishkina EV, Pichugova SV, Tulakina LG, Belyaeva SV, Ruzakov VO (2014) Cytological and biochemical features of fluid obtained from bronchoalveolar lavage in rats after intratracheal administration of nanosized copper oxide particles. Toxicological Herald 5:8–15.Google Scholar
  35. Ramesh R, Kavitha P, Kanipandian N, Arun S, Thirumurugan R, Subramanian P (2013) Alteration of antioxidant enzymes and impairment of DNA in the SiO2 nanoparticles exposed zebra fish (Danio rerio). Environ Monit Assess 185(7):5873–5881.  https://doi.org/10.1007/s10661-012-2991-4 Google Scholar
  36. Rani V, Verma Y, Rana K, Rana SVS (2017) Zinc oxide nanoparticles inhibit dimethylnitrosamine induced liver injury in rat. Chem Biol Interact S0009-2797(17):30967–30965.  https://doi.org/10.1016/j.cbi.2017.10.009 Google Scholar
  37. Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 7(9):1063–1077.4Google Scholar
  38. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett. 90(213902):21–23Google Scholar
  39. Rogers S, Rice KM, Manne ND, Shokuhfar T, He K, Selvaraj V, Blo-ugh ER (2015) Cerium oxide nanoparticle aggregates affect stress response and function in Caenorhabditis elegans. SAGE Open Medicine 3.  https://doi.org/10.1177/2050312115575387
  40. Rusakova EA, Sizova ЕА, Miroshnikov SА, Sipailova ОYu, Makaev ShА (2016) Study Of potential toxicity of zinc and its oxide nanoparticles on blood parameters, morphological and functional state of liver and element status of pregnant Wistar rats and fetus. Sel’skokhozyaistvennaya biologiya 51(4): 524–532  https://doi.org/10.15389/agrobiology.2016.4.524eng
  41. Schilling K, Bradford B, Castelli D et al (2010) Human safety review of «nano» titanium dioxide and zinc oxide. Photochem Photobiol Sci. 9(4):495–509Google Scholar
  42. Schins RP, Knaapen AM, Cakmak GD (2002) Oxidant-induced DNA damage by quartz in alveolar epithelial cells. Mutat Res 517(1):77–86Google Scholar
  43. Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. BBRC 342(1):86–91.  https://doi.org/10.1016/j.bbrc.2006.01.129 Google Scholar
  44. Shamsutdinova IR, Derkho MA (2015a) Changes in morphological parameters of blood of laboratory animals after administration of silver nanoparticles per os. Agroindustry of Russia. 73:166–170Google Scholar
  45. Shamsutdinova IR, Derkho MA (2015b) Changes in the blood indices of laboratory animals with the introduction of nanoparticles of silver. News of Orenburg State Agrarian University 6(56):122–124Google Scholar
  46. Sipaylova OY, Korneev GI, Miroshnikov SA, Sizova EA, Rusakova EA (2017) Hepatotoxic effect of nanoparticles of metal oxides (ZnO and CuO). Morphology 1(151):44–49Google Scholar
  47. Sizova EA, Miroshnikov SA, Polyakova VS, Lebedev SV, Glushchenko NN (2013) Copper nanoparticles are modulators of apoptosis and structural changes in some organs. Morphology 144(4):47–52Google Scholar
  48. Sizova Е, Miroshnikov S, Yausheva E, Polyakova V (2015) Assessment of morphological and functional changes in organs of rats after intramuscular introduction of iron nanoparticles and their agglomerates. BioMed Research International Article ID 243173.  https://doi.org/10.1155/2015/243173
  49. Sizova ЕА, Miroshnikov SA, Kalashnikov VV (2016) Morphological and biochemical parameters in Wistar rats influenced by molybdenum and its oxide nanoparticles. Sel’skokhozyaistvennaya biologiya 51(6):929–936.  https://doi.org/10.15389/agrobiology.2016.6.929eng
  50. Srinivas A, Rao PJ, Selvam G, Murthy PB, Reddy PN (2011) Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicol Lett 205(2):105–115.  https://doi.org/10.1016/j.toxlet.2011.05.1027 Google Scholar
  51. Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5(12):2573–2577Google Scholar
  52. Tsoi KM, MacParland SA, Ma XZ, Spetzler VN, Echeverri J, Ouyang B, Fadel SM, Sykes EA, Goldaracena N, Kaths JM, Conneely JB, Alman BA, Selzner M, Ostrowski MA, Adeyi OA, Zilman A, McGilvray ID, Chan WC (2016) Mechanism of hard-nanomaterial clearance by the liver. Nat Mater. 15(11):1212–1221.  https://doi.org/10.1038/nmat4718 Google Scholar
  53. Wahajuddin AS (2017) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471Google Scholar
  54. Wang L, Ding W, Zhang F (2010) Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J Nanosci Nanotechnol 10(12):8617–8624Google Scholar
  55. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249.  https://doi.org/10.2147/IJN.S121956 Google Scholar
  56. Wang Z, Li N, Zhao J, White JC, Qu P, Xing B (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25(7):1512–1521Google Scholar
  57. Yan G, Huang Y, Bu Q, Lv L, Deng P, Zhou J, Wang Y, Yang Y, Liu Q, Cen X, Zhao Y (2012) Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(4):577–588Google Scholar
  58. Yan Z, Wang W, Wu Y, Wang W, Li B, Liang N, Wu W (2017) Zinc oxide nanoparticle-induced atherosclerotic alterations in vitro and in vivo. Int J Nanomedicine 12:4433–4442.  https://doi.org/10.2147/IJN.S134897 Google Scholar
  59. Yang L, Kuang H, Zhang W, Aguilar ZP, Xiong Y, Lai W, Xu H, Wei H (2015) Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale 7(2):625–636Google Scholar
  60. Yu CH, Oduro W, Tam K, Edman SC (2008) Tsang Chapter 10 Some applications of nanoparticles. Handbook of Metal Physics 5:365–380Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Elena Sizova
    • 1
    Email author
  • Sergey Miroshnikov
    • 1
  • Xenia Nechitailo
    • 1
  1. 1.Federal Research Centre of Biological Systems and Agro-Technologies of the Russian Academy of SciencesOrenburg State UniversityOrenburgRussia

Personalised recommendations