Skip to main content

Advertisement

Log in

Environmental risk assessment of antibiotics in agroecosystems: ecotoxicological effects on aquatic microbial communities and dissemination of antimicrobial resistances and antibiotic biodegradation potential along the soil-water continuum

  • Research and Education Highlights
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Antibiotics have a wide application range in human and veterinary medicines. Being designed for pharmacological stability, most antibiotics are recalcitrant to biodegradation after ingestion and can be persistent in the environment. Antibiotic residues have been detected as contaminants in various environmental compartments where they cause human and environmental threats, notably with respect to the potential emergence and proliferation of antibiotic-resistant bacteria. An important component of managing environmental risk caused by antibiotics is to understand exposure of soil and water resources to their residues. One challenge is to gain knowledge on the fate of antibiotics in the ecosystem along the soil-water continuum, and on the collateral impact of antibiotics on environmental microorganisms responsible for crucially important ecosystem functions. In this context, the ANTIBIOTOX project aims at studying the environmental fate and impact of two antibiotics of the sulfonamide class of antibiotics, sulfamethazine (SMZ), and sulfamethoxazole (SMX).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • ANSES (2015) Rapport annuel Médicaments vétérinaires contenant des antibiotiques en France en 2014

  • Artigas J, Romaní AM, Gaudes A, Muñoz I, Sabater S (2009) Benthic structure and metabolism in a Mediterranean stream: from biological communities to the whole stream ecosystem function. Freshw Biol 50:2025–2036

    Article  CAS  Google Scholar 

  • Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, Coors A, Finley R, Gaze WH, Heberer T, Lawrence JR, Larsson DGJ, McEwen SA, Ryan JJ, Schönfeld J, Silley P, Snape JR, Van den Eede C, Topp E (2013) Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Persp 121:993–1001

    Article  Google Scholar 

  • Baran W, Sochacka J, Wardas WAA (2006) Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere 65:1295–1299

    Article  CAS  Google Scholar 

  • Barnes KK, Koplin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States — I groundwater. Sci Total Environ 402:192–200

    Article  CAS  Google Scholar 

  • Barra Caracciolo A, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review. J Pharm Biomed Anal 106:25–36

    Article  CAS  Google Scholar 

  • Batt AL, Kostich MS, Lazorchak JM (2008) Analysis of ecologically relevant pharmaceuticals in wastewater and surface water using selective solid-phase extraction and UPLC-MS/MS. Anal Chem 50:5021–5030

    Article  CAS  Google Scholar 

  • Bengtsson-Palme J, Larsson DGJ (2016) concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ Int 86:140–149

    Article  CAS  Google Scholar 

  • Bengtsson-Palme J, Kristiansson E, Larsson DGJ (2018) Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev 1:42

    Google Scholar 

  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Burgmann H, Sorum H, Norstrom M, Pons MN, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Micro 13:310–317

    Article  CAS  Google Scholar 

  • Bernot MJ, Smith L, Frey J (2013) Human and veterinary pharmaceutical abundance and transport in a rural Central Indiana stream influenced by confined animal feeding operations (CAFOs). Sci Total Environ 445–446:219–230

    Article  CAS  Google Scholar 

  • Blanco G, Lemus JA, Grande J (2009) Microbial pollution in wildlife: linking agricultural manuring and bacterial antibiotic resistance in red-billed choughs. Microbial Environ Res 109:405–412

    CAS  Google Scholar 

  • Bottoni P, Caroli S (2015) Detection and quantification of residues and metabolites of medicinal products in environmental compartments, food commodities and workplaces. A review. J Pharm Biomed Anal 106:3–24

    Article  CAS  Google Scholar 

  • Boxall ABA (2004) The environmental side effects of medication: how are human and veterinary medicines in soils and water bodies affecting human and environmental health? EMBO Rep 5:1110–1116

    Article  CAS  Google Scholar 

  • Brandt KK, Sjøholm OR, Krogh KA, Halling-Sørensen B, Nybroe O (2009) The environmental release and fate of antibiotics. Environ Sci Technol 43:2963–2968

    Article  CAS  Google Scholar 

  • Brandt KK, Amézquita A, Backhaus T, Boxall A, Coors A, Heberer T, Lawrence JR, Lazorchak J, Schönfeld J, Snape JR, Zhu YG, Topp E (2015) Ecotoxicological assessment of antibiotics and other compounds with antimicrobial properties: a call for improved consideration of microorganisms. Environ Int 85:189–205

    Article  CAS  Google Scholar 

  • Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI (2001) Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 67:1494–1502

    Article  CAS  Google Scholar 

  • Chen J, Xie S (2018) Overview of sulfonamide biodegradation and the relevant pathways and microorganisms. Sci Total Environ 640-641:1465–1477

    Article  CAS  Google Scholar 

  • Chitescu CL, Oosterink E, De Jong J, Stolker AAM (2012) Accurate mass screening of pharmaceuticals and fungicides in water by U-HPLC-Exactive Orbitrap MS. Anal Bioanal Chem 403:2997e3011

    Article  CAS  Google Scholar 

  • Chunhui Z, Liangliang W, Xiangyu G, Xudan H (2016) Antibiotics in WWTP discharge into the Chaobai river, Beijing. Arch Environ Prot 42:48–57

    Article  Google Scholar 

  • Collado N, Buttiglieri G, Marti E, Ferrando-Climent L, Rodriguez-Mozaz S, Barcelo D, Comas J, Rodriguez-Roda I (2013) Effects on activated sludge bacterial community exposed to sulfamethoxazole. Chemosphere 93:99–106

    Article  CAS  Google Scholar 

  • Corcoll N, Casellas M, Huerta B, Guasch H, Acuña V, Rodriguez-Mozaz S, Serra-Compte A, Barcelo D, Sabater S (2015) Effects of flow intermittency and pharmaceutical exposure on the structure and metabolism of stream biofilms. Sci Total Environ 503-504:159–170

    Article  CAS  Google Scholar 

  • De Vries SL, Zhang P (2016) Antibiotics and the terrestrial nitrogen cycle: a review. Curr Pollution Rep 2:51–67

    Article  CAS  Google Scholar 

  • de Weert J, Smedes F (2015) Passive sampling van grondwater. Een trial in peilbuizen van het provinciaal meetnet van de provincie Noord-Brabant. Deltares, Delft, the Netherlands. Report no 210074-000-BGS-0009, 1-44

  • Deng Y, Mao Y, Li B, Yang C, Zhang T (2016) Aerobic degradation of sulfadiazine by Arthrobacter spp.: kinetics, pathways and genomic characterization. Environ Sci Technol 50:9566–9575

    Article  CAS  Google Scholar 

  • Deng Y, Li B, Zhang T (2018) Bacteria that make a meal of sulfonamide antibiotics: blind spots and emerging opportunities. Environ Sci Technol 52:3854–3868

    Article  CAS  Google Scholar 

  • Di Nica V, Menabelli L, Azimonti G, Finizio A (2015) RANKVET: a new ranking method for comparing and prioritizing the environmental risk of veterinary pharmaceuticals. Ecol Indic 52:270–276

    Article  CAS  Google Scholar 

  • Finley RL, Collignon P, Larsson DGJ, McEwen SA, Li XZ, Gaze WH, Reid-Smith R, Timinouni M, Graham DW, Topp E (2013) The scourge of antibiotic resistance: the important role of the environment. J Clin Infect Dis 57:704–710

    Article  Google Scholar 

  • Gao P, Munir M, Xagoraraki I (2012) Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci Tot Environ 421:173–183

    Article  CAS  Google Scholar 

  • Gauthier H, Yargeau V, Cooper DG (2010) Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Sci Tot Environ 408:1701–1706

    Article  CAS  Google Scholar 

  • Ghiglione JF, Martin-Laurent F, Pesce S (2016) Microbial ecotoxicology: an emerging discipline facing contemporary environmental threats. Environ Sci Pollut Res 23:3981–3983

    Article  Google Scholar 

  • González-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganés F, Rosal R, Boltes K, Marco E, Fernández-Piñas F (2013) Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. Water Res 47:2050–2064

    Article  CAS  Google Scholar 

  • Grenni P, Ancona V, Caraciollo AB (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39

    Article  CAS  Google Scholar 

  • Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI (2011) Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 7(7):e1002158

    Article  CAS  Google Scholar 

  • Gutierrez IR, Watanabe N, Harter T, Glaser B, Radke M (2010) Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic haploxeralf. J Soils Sediments 10:537–544

    Article  CAS  Google Scholar 

  • Heuer H, Schmitt H, Smalla K (2011) Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol 14:236–243

    Article  CAS  Google Scholar 

  • Hirth N, Topp E, Dörfler U, Stupperich E, Munch JC, Schroll R (2016) An effective bioremediation approach for enhanced microbial degradation of the veterinary antibiotic sulfamethazine in an agricultural soil. Chem Biol Technol Agric 3:29

    Article  CAS  Google Scholar 

  • Hou L, Yin G, Liu M, Zhou J, Zheng Y, Gao J, Zong H, Yang Y, Gao L, Tong C (2015) Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments. Environ Sci Technol 49:326–333

    Article  CAS  Google Scholar 

  • Hruska K, Franek M (2012) Sulfonamides in the environment: a review and a case report. Veterinarni Medicina 57:1–35

    Article  Google Scholar 

  • Huang X, Feng Y, Hu C, Xia X, Yu D, Zou X (2016) Mechanistic model for interpreting the toxic effects of sulfonamides on nitrification. J Hazard Mater 305:123–129

    Article  CAS  Google Scholar 

  • Huerta B, Rodríguez-Mozaz S, Ponsatí L, Acuña V, Sabater S, Barceló D (2016) Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river. Sci Total Environ 540:241–249

    Article  CAS  Google Scholar 

  • Iglesias A, Nebot C, Vazquez BI, Miranda JM, Abuin CFM, Cepeda A (2014) Detection of veterinary drug residues in surface waters collected nearby farming areas in Galicia, North of Spain. Environ Sci Pollut Res 21:2367–2377

    Article  CAS  Google Scholar 

  • Jiang B, Li A, Cui D, Cai R, Ma F, Wang Y (2014) Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium. Appl Microbiol Biotechnol 98:4671–4681

    Article  CAS  Google Scholar 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13

    Article  CAS  Google Scholar 

  • Knapp CW, Dolfing J, Ehlert PAI, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587

    Article  CAS  Google Scholar 

  • Koike S, Krapac IG, Oliver HD, Yannarell AC, Chee-Sanford J, Aminov RI, Mackie RI (2007) Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl Environ Microbiol 73:4813–4823

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Response to comment on “Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. Streams, 1999−2000: a national reconnaissance”. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Lacina P, Zenatova P, Vavrova M (2012) The assessment of contamination of selected river streams in the Czech Republic by human and veterinary drug residues with liquid and gas chromatography. Fresenius Environ Bull 21:3318–3324

    CAS  Google Scholar 

  • Larcher S, Yargeau V (2011) Biodegradation of sulfamethoxazole by individual and mixed bacteria. Appl Microbiol Biotechnol 91:211–218

    Article  CAS  Google Scholar 

  • Larsson DGJ, Andremont A, Bengtsson-Palme J, Brandt KK, de Roda Husman AM, Fagerstedt P, Fick J, Flach C-F, Gaze WH, Kuroda M, Kvint K, Laxminarayan R, Manaia CM, Nielsen KM, Plant L, Ploy M-C, Segovia C, Simonet P, Smalla K, Snape J, Topp E, van Hengel AJ, Verner-Jeffreys DW, Virta MPJ, Wellington EM, Wernersson A-S (2018) Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environ Int 117:132–138

    Article  Google Scholar 

  • Lopez P, Espinosa M, Greenberg B, Lacks SA (1987) Sulfonamide resistance in Streptomyces pneumoniae: DNA sequence of the gene encoding dihydropteorate synthase and characterization of the enzyme. J Bacteriol 169:4320-43-26

    Google Scholar 

  • Luo Y, Mao D, Rysz M, Zhou Q, Zhang H, Xu L, Alvarez PJJ (2010) Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ Sci Technol 44:7220–7225

    Article  CAS  Google Scholar 

  • Manzetti S, Ghisi R (2014) The environmental release and fate of antibiotics. Marine Pollut Bull 79:7–15

    Article  CAS  Google Scholar 

  • Mao F, Liu X, Wu K, Zhou C, Si Y (2018) Biodegradation of sulfonamides by Shewanella oneidensis MR-1 and Shewanella sp. strain MR-4. Biodegradation 29:129–140

    Article  CAS  Google Scholar 

  • Martin-Laurent F, Marti R, Waglechner N, Wright GD, Topp E (2014) Draft genome sequence of the sulfonamide antibiotic-degrading Microbacterium sp. strain C448. Genome Announc. https://doi.org/10.1128/genomeA.01113-13

  • Maskell JP, Sefton AM, Hall LMC (1997) Mechanism of sulfonamide resistance in clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 41:2121–2126

    Article  CAS  Google Scholar 

  • Matongo S, Birungi G, Moodley B, Ndungu P (2015) Occurrence of selected pharmaceuticals in water and sediment of Umgeni River, KwaZulu-Natal, South Africa. Environ Sci Pollut Res 22:10298–10308

    Article  CAS  Google Scholar 

  • McKinney CW, Loftin KA, Meyer MT, Davis JG, Pruden A (2010) Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environ Sci Technol 44:6102–6109

    Article  CAS  Google Scholar 

  • Menz J, Schneider M, Kümmerer K (2015) Usage pattern-based exposure screening as a simple tool for the regional priority-setting in environmental risk assessment of veterinary antibiotics: a case study of north-western Germany. Chemosphere 127:42–48

    Article  CAS  Google Scholar 

  • Mora-Gómez J, Freixa A, Perujo N, Barral-Fraga L (2016) In: Romaní AM, Guasch H, Dolors M, Balaguer (eds) Aquatic biofilms: ecology, water quality and wastewater treatment. Caister Academic Press

  • Mulla SI, Hu A, Sun Q, Li J, Suanona F, Ashfaq M, Yu C-P (2018) Biodegradation of sulfamethoxazole in bacteria from three different origins. J Environ Manag 206:93–102

    Article  CAS  Google Scholar 

  • Pei R, Kim SC, Carlson KH, Pruden A (2006) Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res 40:2427–2435

    Article  CAS  Google Scholar 

  • Peng X, Tan J, Yu Y, Wang Z (2008) Multiresidue determination of fluoroquinolone, sulfonamide, trimethoprim, and chloramphenicol antibiotics in urban waters in China. Environ Toxicol Chem 27:73–79

    Article  CAS  Google Scholar 

  • Perron MC, Juneau P (2011) Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environ Res 111:520–529

    Article  CAS  Google Scholar 

  • Petri W (2001) In: Hardman JG, Limbird LE (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 10th ed. McGraw-Hill, New York, pp 1171–1188

    Google Scholar 

  • Pinna MV, Casraldi P, Deiana P, Pusino A, Garau G (2012) Sorption behavior of sulfamethazine on unamended and manure-amended soils and short-term impact on soil microbial community. Ecotoxicol Environ Saf 84:234–242

    Article  CAS  Google Scholar 

  • Pruden A, Messner N, Pereyra L, Hanson RE, Hiibel SR, Reardon KF (2007) The effect of inoculum on the performance of sulfate-reducing columns treating heavy metal contaminated water. Water Res 41:904–914

    Article  CAS  Google Scholar 

  • Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Lazorchak JM, Suzuki S, Silley P, Snape JR, Topp E, Zhang T, Zhu YG (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121:878–885

    Article  Google Scholar 

  • Ratsak C, Guhl B, Zühlke S, Delschen T (2013) Veterinärantibiotikarückstände in Gülle und Gärresten aus Nordrhein-Westfalen. Environ Sci Europe 25:7 http://www.enveurope.com/content/25/1/7

    Article  Google Scholar 

  • Reis AC, Cvancarova M, Liu Y, Lenz M, Hettich T, Kolvenbach BA, Corvini PFX, Nunes OC (2018) Biodegradation of sulfamethoxazole by a bacterial consortium of Achromobacter denitrificans PR1 and Leucobacter sp. GP. Appl Microbiol Biotechnol 102:10299–10314

    Article  CAS  Google Scholar 

  • Ricken B, Corvini PF, Cichocka D, Parisi M, Lenz M, Wyss D, Martínez-Lavanchy PM, Müller JA, Shahgaldian P, Tulli LG, Kohler HP, Kolvenbach BA (2013) Ipso-hydroxylation and subsequent fragmentation: a novel microbial strategy to eliminate sulfonamide antibiotics. Appl Environ Microbiol 79:5550–5558

    Article  CAS  Google Scholar 

  • Ricken B, Fellmann O, Kohler HP, Schäffer A, Corvini PFX, Kolvenbach BA (2015) Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 – elucidating the downstream pathway. New Biotechnol 32:710–715

    Article  CAS  Google Scholar 

  • Ricken B, Kolvenbach BA, Bergesch C, Benndorf D, Kroll K, Strnad H, Vlcek C, Adaixo R, Hammes F, Shahgaldian P, Schäffer A, Kohler HPE, Corvini PFX (2017) FMNH2-dependent monooxygenase initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics. Sci Rep 7:15783

    Article  CAS  Google Scholar 

  • Roose-Amsaleg C, Laverman AM (2016) Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environ Sci Pollut Res 23:4000–4012

    Article  CAS  Google Scholar 

  • Sapkota AR, Curriero FC, Gibson KE, Schwab KJ (2007) Antibiotic-resistant enterococci and fecal indicators in surface water and groundwater impacted by a concentrated swine feeding operation. Environ Health Perspect 115:1040–1045

    Article  CAS  Google Scholar 

  • Stoll C, Sidhu JPS, Tiehm A, Toze S (2012) Prevalence of clinically relevant antibiotic resistance genes in surface water samples collected from Germany and Australia. Environ Sci Technol 46:9716–9726

    Article  CAS  Google Scholar 

  • Storteboom H, Arabi M, Davis JG, Crimi B, Pruden A (2010) Tracking antibiotic resistance genes in the South Platte River basin using molecular signatures of urban, agricultural, and pristine sources. Environ Sci Technol 44:7397–7404

    Article  CAS  Google Scholar 

  • Tamtam F, Mercier F, Le Bot B, Eurin J, Dinh QT, Clément M, Chevreuil M (2008) Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Sci Total Environ 393:84–95

    Article  CAS  Google Scholar 

  • Tappe W, Herbst M, Hofmann D, Koeppchen S, Kummer S, Thiele B, Groeneweg J (2013) Degradation of sulfadiazine by Microbacterium lacus strain SDZm4, isolated from Lysimeters previously manured with slurry from sulfadiazine-medicated pigs. Appl Environ Microbiol 79:2572–2577

    Article  CAS  Google Scholar 

  • Topp E, Chapman R, Devers-Lamrani M, Hartmann A, Martin-Laurent F, Marti R, Sabourin L, Scott A, Sumaraha M (2013) Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading Microbacterium sp. J Environ Qual 42:173–178

    Article  CAS  Google Scholar 

  • Vahjen W, Pietruszynska D, Starke IC, Zentek J (2015) High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs. Gut Pathog 23:1–7

    Google Scholar 

  • Van der Grinten E, Pikkemaat MG, Van den Brandhof E-J, Stroomberg GJ, Kraak MHS (2010) Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere 80:1–6

    Article  CAS  Google Scholar 

  • Veach AM, Bernot MJ (2011) Temporal variation of pharmaceuticals in an urban and agriculturally influenced stream. Sci Total Environ 409:4553–4563

    Article  CAS  Google Scholar 

  • Vila-Costa M, Gioia R, Aceña J, Pérez S, Casamayor EO, Dachs J (2017) Degradation of sulfonamides as a microbial resistance mechanism. Water Res 115:309–317

    Article  CAS  Google Scholar 

  • Wang J, Wang S (2018) Microbial degradation of sulfamethoxazole in the environment. Appl Microbiol Biotechnol 102:3573–3582

    Article  CAS  Google Scholar 

  • Wang S, Hu Y, Wang J (2018) Biodegradation of typical pharmaceutical compounds by a novel strain Acinetobacter sp. J Environ Manag 217:240–246

    Article  CAS  Google Scholar 

  • Wright GD (2010) Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13:589–594

    Article  CAS  Google Scholar 

  • Writer JH, Antweiler RC, Ferrer I, Ryan JN, Thurman EM (2013) In-stream attenuation of neuro-active pharmaceuticals and their metabolites. Environ Sci Technol 47:9781–9790

    Article  CAS  Google Scholar 

  • Wunder DB, Bosscher VA, Cok RC, Hozalski RM (2011) Sorption of antibiotics to biofilm. Water Res 45:2270–2280

    Article  CAS  Google Scholar 

  • Xia S, Jia R, Feng F, Xie K, Li H, Jing D, Xu X (2012) Effect of solids retention time on antibiotics removal performance and microbial communities in an A/O-MBR process. Bioresour Technol 106:36–43

    Article  CAS  Google Scholar 

  • Yang LH, Ying GG, Su HC, Stauber JL, Adams MS, Binet MT (2008) Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environ Toxicol Chem 27:1201–1208

    Article  CAS  Google Scholar 

  • Yargau V, Lopata A, Metcalfe C (2007) Pharmaceuticals in the Yamaska River, Quebec, Canada. Service de l’étude du milieu aquatique. 1985. La Yamaska, une rivière à rajeunir. Ministère de l’environnement du Québec, Direction générale de l’assainissement de l’eau, Direction des études du milieu aquatique, Québec

  • Yergeau E, Sanschagrin S, Waiser MJ, Lawrence JR, Greer CW (2012) Sub-inhibitory concentrations of different pharmaceutical products affect the meta-transcriptome of river biofilm communities cultivated in rotating annular reactors. Environ Microb Rep 4:350–359

    Article  CAS  Google Scholar 

  • Zhang WW, Wen YY, Niu ZL, Yin K, Xu DX, Chen LX (2012a) Isolation and characterization of sulfonamide-degrading bacteria Escherichia sp. HS21 and Acinetobacter sp. HS51. World J Microbiol Biotechnol 28:447–452

    Article  CAS  Google Scholar 

  • Zhang WW, Xu D, Niu ZL, Yin K, Liu P, Chen LX (2012b) Isolation and characterization of Pseudomonas sp. DX7 capable of degrading sulfadoxine. Biodegradation 23:431–439

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Fabrice Martin-Laurent is also grateful to the Organization for Economic Co-operation and Development (OECD) for support of a work transfer to E. Topp’s laboratory within the framework of the Co-Operative Research Program within the “Biological Resource Management for Sustainable Agricultural Systems” of the OECD (contract number JA00073530).

Funding

The authors would like to thank the ANR (Agence Nationale de la Recherche) for funding the ANTIBIOTOX project (contract no ANR-17-CE34-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Martin-Laurent.

Additional information

Responsible editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin-Laurent, F., Topp, E., Billet, L. et al. Environmental risk assessment of antibiotics in agroecosystems: ecotoxicological effects on aquatic microbial communities and dissemination of antimicrobial resistances and antibiotic biodegradation potential along the soil-water continuum. Environ Sci Pollut Res 26, 18930–18937 (2019). https://doi.org/10.1007/s11356-019-05122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05122-0

Keywords

Navigation