Skip to main content

The possible global hazard of cell phone radiation on thyroid cells and hormones: a systematic review of evidences

Abstract

The aim of this review was to investigate the effects of possible harmful waves from either cell phone use or being within the range of the cell phone from 450 to 3800 MHz on the thyroid cells and hormones. Eight electronic datasets were systematically searched using MeSH terms, including “cell phone,” “mobile phone,” “GSM,” “radio frequency,” “smartphone,” “triiodothyronine,” “thyroxin,” “thyroid-stimulating hormone,” “T3,” “T4,” “TSH,” and “morphological” and all possible combinations, to identify relevant studies published up to Dec 2018. We also manually searched the reference lists of potentially selected studies to identify further relevant publications. About 161 relevant studies were initially found. After screening titles and abstracts, 139 studies were excluded, and finally 22 studies (comprising 7182 cases) were included in the qualitative synthesis. Of the 22 included studies, 11 studies reported changes in T3 and T4 levels (six reported a decrease in T3 levels and one reported increase in it); moreover, five found decreased T4 levels and two studies an increased level. In other 10 studies, TSH alteration was reported. Of these, two studies reported a decrease in TSH level and one reported an increase in the hormone levels, while in the remaining studies non-significant changes were reported. Finally, seven studies examined histological changes in the thyroid gland follicles and showed that the volume of these cells was reduced. Based on the evidence discussed above, the reduction in diameter of thyroid follicles is potentially linked with cell phone radiation. Exposure may negatively influence the iodine uptake in the thyroid gland or increases temperature effect on the thyroid gland. However, further research are needed in order to show that the level of TSH and thyroid hormone suppression by microwave.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Adam AN, Taha ARM (2008) Effects of electromagnetic field on thyroid functions in rats. Bull High Inst Public Health 38:568–578

    Article  Google Scholar 

  • Allison RR (2013) The electromagnetic spectrum: current and future applications in oncology. Future Oncol 9:657–667

    Article  CAS  Google Scholar 

  • Baharara J, Parivar K, Oryan S, Ashraf A (2004) The effects of long-term exposure with simulating cell phone waves on gonads of female Balb/C mouse. J Reprod Infertil 5:217–226

    Google Scholar 

  • Banik S, Bandyopadhyay S, Ganguly S (2003) Bioeffects of microwave––a brief review. Bioresour Technol 87:155–159

    Article  CAS  Google Scholar 

  • Bauer M, Goetz T, Glenn T, Whybrow PC (2008) The thyroid-brain interaction in thyroid disorders and mood disorders. J Neuroendocrinol 20:1101–1114

    Article  CAS  Google Scholar 

  • Bergamaschi A, Magrini A, Ales G, Coppeta L, Somma G (2004) Are thyroid dysfunctions related to stress or microwave exposure (900 MHz)? Int J Immunopathol Pharmacol 17:31–36

    Article  CAS  Google Scholar 

  • Bernal J (2007) Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 3:249–259

    Article  CAS  Google Scholar 

  • Bhargav H, Srinivasan T, Bista S, Mooventhan A, Suresh V, Hankey A, Nagendra H (2017) Acute effects of mobile phone radiations on subtle energy levels of teenagers using electrophotonic imaging technique: a randomized controlled study. Int J Yoga 10:16–23

    Article  Google Scholar 

  • Boas M, Feldt-Rasmussen U, Main KM (2012) Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol 355:240–248

    Article  CAS  Google Scholar 

  • Brent GA (2012) Mechanisms of thyroid hormone action. J Clin Invest 122:3035–3043

    Article  CAS  Google Scholar 

  • Cheng S-Y, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31:139–170

    Article  CAS  Google Scholar 

  • Chiamolera MI, Wondisford FE (2009) Thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology 150:1091–1096

    Article  CAS  Google Scholar 

  • Cooper DS (2001) Clinical practice. Subclinical hypothyroidism. N Engl J Med 345:260–265

    Article  CAS  Google Scholar 

  • Cooper DS, Biondi B (2012) Subclinical thyroid disease. Lancet 379:1142–1154

    Article  Google Scholar 

  • Davies L, Welch HG (2014) Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg 140:317–322

    Article  Google Scholar 

  • de Seze R, Fabbro-Peray P, Miro L (1998) GSM radiocellular telephones do not disturb the secretion of antepituitary hormones in humans. Bioelectromagnetics 19:271–278

    Article  Google Scholar 

  • Dimida A, Ferrarini E, Agretti P, De Marco G, Grasso L, Martinelli M, Longo I, Giulietti D, Ricci A, Galimberti M (2011) Electric and magnetic fields do not modify the biochemical properties of FRTL-5 cells. J Endocrinol Investig 34:185–189

    Article  CAS  Google Scholar 

  • Djeridane Y, Touitou Y, de Seze R (2008) Influence of electromagnetic fields emitted by GSM-900 cellular telephones on the circadian patterns of gonadal, adrenal and pituitary hormones in men. Radiat Res 169:337–343

    Article  CAS  Google Scholar 

  • Elsayed NM, Jastaniah SD (2016) Mobile phone use and risk of thyroid gland lesions detected by ultrasonography. Open Journal of Radiology 6:140–146

    Article  Google Scholar 

  • Eskander EF, Estefan SF, Abd-Rabou AA (2012) How does long term exposure to base stations and mobile phones affect human hormone profiles? Clin Biochem 45:157–161

    Article  CAS  Google Scholar 

  • Esmekaya MA, Seyhan N, Omeroglu S (2010) Pulse modulated 900 MHz radiation induces hypothyroidism and apoptosis in thyroid cells: a light, electron microscopy and immunohistochemical study. Int J Radiat Biol 86:1106–1116

    Article  CAS  Google Scholar 

  • Fattahi-asl J, Karbalae M, Baradaran-Ghahfarokhi M, Baradaran-Ghahfarokhi H, Khajoei-Fard R, Karbalae M, Baradaran-Ghahfarokhi M (2013) Radiofrequency radiation and human triiodothronine hormone: immunoenzymometric assay. Recent Patents on Biomarkers 3:213–218

    Article  CAS  Google Scholar 

  • Federal Communications C (2013) Human exposure to radiofrequency electromagnetic fields. Final rule. Fed Regist 78:33633–33653

    Google Scholar 

  • Ferreri F, Curcio G, Pasqualetti P, De Gennaro L, Fini R, Rossini PM (2006) Mobile phone emissions and human brain excitability. Ann Neurol 60:188–196

    Article  Google Scholar 

  • Geronikolou SA, Chamakou A, Mantzou A, Chrousos G, KanakaGantenbein C (2015) Frequent cellular phone use modifies hypothalamic-pituitary-adrenal axis response to a cellular phone call after mental stress in healthy children and adolescents: a pilot study. Sci Total Environ 536:182–188

    Article  CAS  Google Scholar 

  • Gershengorn MC (1989) Section IV. effects of TRH on secondary messenger systems: mechanism of signal transduction by TRH. Ann N Y Acad Sci 553:191–196

    Article  CAS  Google Scholar 

  • Gong X, Wu J, Mao Y, Zhou L (2014) Long-term use of mobile phone and its association with glioma: a systematic review and meta-analysis. Zhonghua Yi Xue Za Zhi 94:3102–3106

    Google Scholar 

  • Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, O'Heir CE, Mitchell ML, Hermos RJ, Waisbren SE, Faix JD, Klein RZ (1999) Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 341:549–555

    Article  CAS  Google Scholar 

  • Hajioun B, Elahizadeh H (2015) Effects of electromagnetic cell phone radiation on thyroid gland tissue in rats treated with hydroalcholic Allium sativum extract

  • Hall JE (2015) Guyton and Hall textbook of medical physiology e-book. Elsevier Health Sciences

  • Harris KB, Pass KA (2007) Increase in congenital hypothyroidism in New York State and in the United States. Mol Genet Metab 91:268–277

    Article  CAS  Google Scholar 

  • Hedberg CW, Fishbein DB, Janssen RS, Meyers B, McMillen JM, MacDonald KL, White KE, Huss LJ, Hurwitz ES, Farhie JR, Simmons JL, Braverman LE, Ingbar SH, Schonberger LB, Osterholm MT (1987) An outbreak of thyrotoxicosis caused by the consumption of bovine thyroid gland in ground beef. N Engl J Med 316:993–998

    Article  CAS  Google Scholar 

  • Hennessey JV, Espaillat R (2015) Diagnosis and management of subclinical hypothyroidism in elderly adults: a review of the literature. J Am Geriatr Soc 63:1663–1673

    Article  Google Scholar 

  • Hirst TC, Vesterinen HM, Sena ES, Egan KJ, Macleod MR, Whittle IR (2013) Systematic review and meta-analysis of temozolomide in animal models of glioma: was clinical efficacy predicted? Br J Cancer 108:64–71

    Article  CAS  Google Scholar 

  • Hollenberg AN, Monden T, Flynn TR, Boers M-E, Cohen O, Wondisford FE (1995) The human thyrotropin-releasing hormone gene is regulated by thyroid hormone through two distinct classes of negative thyroid hormone response elements. Mol Endocrinol 9:540–550

    CAS  Google Scholar 

  • Humans IWGotEoCRt (2013) Non-ionizing radiation, part 2: radiofrequency electromagnetic fields. IARC Monogr Eval Carcinog Risks Hum 102:1–460

    Google Scholar 

  • Jin YB, Choi HD, Kim BC, Pack JK, Kim N, Lee YS (2013) Effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on serum hormone levels in rats. J Radiat Res 54:430–437

    Article  CAS  Google Scholar 

  • Karadede B, Akdag MZ, Kanay Z, Bozbiyik A (2009) The effect of 900 MHz radiofrequency (Rf) radiation on some hormonal and biochemical parameters in rabbits. J Int Dent Med Res 2:110–115

    Google Scholar 

  • Kim HS, Paik MJ, Kim YJ, Lee G, Lee YS, Choi HD, Kim BC, Pack JK, Kim N, Ahn YH (2013) Effects of whole-body exposure to 915 MHz RFID on secretory functions of the thyroid system in rats. Bioelectromagnetics 34:521–529

    CAS  Google Scholar 

  • Kirsten D (2000) The thyroid gland: physiology and pathophysiology. Neonatal Network 19:11–26

    Article  CAS  Google Scholar 

  • Koyu A, Cesur G, Ozguner F, Akdogan M, Mollaoglu H, Ozen S (2005a) Effects of 900MHz electromagnetic field on TSH and thyroid hormones in rats. Toxicol Lett 157:257–262

    Article  CAS  Google Scholar 

  • Koyu A, Gökalp O, Özgüner F, Cesur G, Mollaoğlu H (2005b) The effects of subchronic 1800 MHz electromagnetic field exposure on the levels of TSH, T3, T4, cortisol and testosterone hormones. Genel Tip Dergisi 15:101–105

    Google Scholar 

  • Mazzaferri EL (1999) An overview of the management of papillary and follicular thyroid carcinoma. Thyroid 9:421–427

    Article  CAS  Google Scholar 

  • Mohammad S, Mortazavi J, Habib A, Ganj-Karimi A, Doost RS (2009) Alterations in TSH and thyroid hormones following mobile phone use. Oman Med J 24:274–278

    Google Scholar 

  • Ossenkopp KP, Koltek WT, Persinger MA (1972) Prenatal exposure to an extremely low frequency-low intensity rotating magnetic field and increases in thyroid and testicle weight in rats. Dev Psychobiol 5:275–285

    Article  CAS  Google Scholar 

  • Pawlak K, Sechman A, Nieckarz Z (2014) Plasma thyroid hormones and corticosterone levels in blood of chicken embryos and post hatch chickens exposed during incubation to 1800 MHz electromagnetic field. Int J Occup Med Environ Health 27:114–122

    Article  Google Scholar 

  • Pop VJ, Brouwers EP, Vader HL, Vulsma T, van Baar AL, de Vijlder JJ (2003) Maternal hypothyroxinaemia during early pregnancy and subsequent child development: a 3-year follow-up study. Clin Endocrinol 59:282–288

    Article  Google Scholar 

  • Repacholi MH, Lerchl A, Roosli M, Sienkiewicz Z, Auvinen A, Breckenkamp J, d'Inzeo G, Elliott P, Frei P, Heinrich S, Lagroye I, Lahkola A, McCormick DL, Thomas S, Vecchia P (2012) Systematic review of wireless phone use and brain cancer and other head tumors. Bioelectromagnetics 33:187–206

    Article  Google Scholar 

  • Sangun O, Dundar B, Comlekci S, Buyukgebiz A (2015) The effects of electromagnetic field on the endocrine system in children and adolescents. Pediatr Endocrinol Rev 13:531–545

    Google Scholar 

  • Segev DL, Umbricht C, Zeiger MA (2003) Molecular pathogenesis of thyroid cancer. Surg Oncol 12:69–90

    Article  Google Scholar 

  • Shahryar HA, Lotfi A, Ghodsi MB, Bonary ARK (2009) Effects of 900 MHz electromagnetic fields emitted from a cellular phone on the T3, T4, and cortisol levels in Syrian hamsters. Bull Vet Inst Pulawy 53:233–236

    Google Scholar 

  • Shaukat F, Qamar K, Shahid U, Iqbal I (2013) Effect of mobile phone radiations on size of thyroid follicles in Balb/C mice

  • Silva V, Hilly O, Strenov Y, Tzabari C, Hauptman Y, Feinmesser R (2016) Effect of cell phone-like electromagnetic radiation on primary human thyroid cells. Int J Radiat Biol 92:107–115

    Article  CAS  Google Scholar 

  • Sinha RK (2008) Chronic non-thermal exposure of modulated 2450 MHz microwave radiation alters thyroid hormones and behavior of male rats. Int J Radiat Biol 84:505–513

    Article  CAS  Google Scholar 

  • Sivani S, Sudarsanam D (2012) Impacts of radio-frequency electromagnetic field (RF-EMF) from cell phone towers and wireless devices on biosystem and ecosystem-a review. Biol Med 4:202

    Google Scholar 

  • Tata JR (2013) The road to nuclear receptors of thyroid hormone. Biochim Biophys Acta Gen Subj 1830:3860–3866

    Article  CAS  Google Scholar 

  • Thibodeau G, Patton K (1997) The human body in health and disease. Mosby-Year Book. Inc, St. Louis, MO

    Google Scholar 

  • Vanderpump MP, Tunbridge WM, French JM, Appleton D, Bates D, Clark F, Grimley Evans J, Hasan DM, Rodgers H, Tunbridge F et al (1995) The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol 43:55–68

    Article  CAS  Google Scholar 

  • Weintraub BD, Gesundheit N, Taylor T, Gyves PW (1989) Effect of TRH on TSH glycosylation and biological action. Ann N Y Acad Sci 553:205–213

    Article  CAS  Google Scholar 

  • Williams G (2008) Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol 20:784–794

    Article  CAS  Google Scholar 

  • Yamada M, Saga Y, Shibusawa N, Hirato J, Murakami M, Iwasaki T, Hashimoto K, Satoh T, Wakabayashi K, Taketo MM (1997) Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin-releasing hormone gene. Proc Natl Acad Sci 94:10862–10867

    Article  CAS  Google Scholar 

  • Yang L, Hao D, Wu S, Zhong R, Zeng Y (2013) SAR and temperature distribution in the rat head model exposed to electromagnetic field radiation by 900 MHz dipole antenna. Australas Phys Eng Sci Med 36:251–257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was the result of a project affiliated by Deputy of Research Affairs, Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakher Rahim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOC 13 kb)

ESM 2

(DOC 31 kb)

ESM 3

(PDF 194 kb)

ESM 4

(DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asl, J.F., Larijani, B., Zakerkish, M. et al. The possible global hazard of cell phone radiation on thyroid cells and hormones: a systematic review of evidences. Environ Sci Pollut Res 26, 18017–18031 (2019). https://doi.org/10.1007/s11356-019-05096-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05096-z

Keywords

  • Cell phone
  • Thyroid hormones
  • Triiodothyronine
  • Thyroxin
  • Thyroid-stimulating hormone (TSH)