Environmental Science and Pollution Research

, Volume 26, Issue 19, pp 19155–19170 | Cite as

Surface ozone in the Doon Valley of the Himalayan foothills during spring

  • Narendra OjhaEmail author
  • Imran GirachEmail author
  • Kiran Sharma
  • Prabha Nair
  • Jaydeep Singh
  • Neetu Sharma
  • Narendra Singh
  • Johannes Flemming
  • Antje Inness
  • Kandula Venkat Subrahmanyam
Research Article


Elevated ozone (O3) pollution is observed every spring over the Northern Indian region including the Himalayan foothills, with a maximum typically in the month of May. However, studies investigating influences of photochemistry and dynamics in the valleys of Central Himalaya are limited. Here, in situ surface O3 observations conducted at Dehradun (77.99° E, 30.27° N, 600 m above mean sea level) in the Doon Valley during April–July 2018 are presented. These O3 observations reveal the prevalence of an urban environment over Dehradun with enhanced levels during noontime (66.4 ppbv ± 11.0 ppbv in May) and lower levels during night (26.7 ppbv ± 11.5 ppbv). Morning time O3 enhancement rate at Dehradun (7.5 ppbv h−1) is found to be comparable to that at Bode (7.3 ppbv h−1) in another valley of Himalayan foothills (Kathmandu), indicating stronger anthropogenic emissions in the Doon Valley as well. Daily average O3 at Dehradun varied in the range of 13.7–71.3 ppbv with hourly values reaching up to 103.1 ppbv during the study period. Besides the in situ photochemical O3 production, the entrainment of O3-rich air through boundary layer dynamics also contributes in noontime O3 enhancement in the Doon Valley. Monthly average O3 at Dehradun (49.3 ppbv ± 19.9 ppbv) is observed to be significantly higher than that over urban sites in Northern India (35–41 ppbv) and Bode (38.5 ppbv) in the Kathmandu Valley during May. O3 photochemical buildup, estimated to be 30.3 ppbv and 39.7 ppbv during April and May, respectively, is significantly lower in June (21.2 ppbv). Copernicus Atmosphere Monitoring Service (CAMS) model simulations successfully reproduce the observed variability in noontime O3 at Dehradun (r = 0.86); however, absolute O3 levels were typically overestimated. The positive relationship between CAMS O3 and CO (r = 0.65) together with an O3/CO slope of 0.16 is attributed to the influences of biomass burning besides anthropogenic emissions on observed O3 variations in the Doon Valley. O3 observations show an enhancement by 35–56% at Dehradun during a high-fire activity period in May 2018 as compared to a low-fire activity period over the Northern Indian region in agreement with the enhancement found in CAMS O3 fields (10–65%) over the region in the vicinity of Dehradun.


Himalayan foothills Doon Valley Urban pollution Biomass burning Northern India Photochemistry Boundary layer dynamics Entrainment 



The authors thank the Copernicus Atmosphere Monitoring Service (CAMS), Global Fire Assimilation System (GFAS), and the European Centre for Medium-Range Weather Forecasts (ECMWF) for the chemical (O3, CO) and meteorological datasets used in the study. Usage of rainfall data from the India Meteorological Department (IMD) and fire locations from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua spacecraft are acknowledged. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model ( used in this publication. The use of the Ferret program, a product of NOAA’s Pacific Marine Environmental Laboratory, for the analysis and graphics in this paper is acknowledged. The HTAP v2 anthropogenic emissions were obtained from We gratefully acknowledge P G Anumod (SPL VSSC) for development of a data acquisition software for recording the ozone data. We are thankful to H. N. Nagaraja, L. M. S. Palni, Radhika Ramachandran, N. V. P. Kiran Kumar and Anil Bhardwaj for their support and fruitful discussions during the study. We thank the two anonymous reviewers for their constructive comments and suggestions.


  1. Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011) Global crop yield reductions due to surface ozone exposure 1: year 2000 crop production losses and economic damage. Atmos Environ 45:2284–2296CrossRefGoogle Scholar
  2. Barman N, Borgohain A, Kundu SS, Saha B, Roy R, Solanki R, Kiran Kumar NVP, Raju PLN (2019) Impact of atmospheric conditions in surface-air exchange of energy in a topographically complex terrain over Umiam. Meteorol Atmos Phys.
  3. Bhardwaj P, Naja M, Rupakheti M, Lupascu A, Mues A, Panday AK, Kumar R, Mahata KS, Lal S, Chandola HC, Lawrence MG (2018) Variations in surface ozone and carbon monoxide in the Kathmandu Valley and surrounding broader regions during SusKat-ABC field campaign: role of local and regional sources. Atmos Chem Phys 18:11949–11971CrossRefGoogle Scholar
  4. Coates J, Mar KA, Ojha N, Butler TM (2016) The influence of temperature on ozone production under varying NOx conditions—a modelling study. Atmos Chem Phys 16:11601–11615 The influence of temperature on ozone production under varying NO<sub><i>x</i></sub> conditions – a modelling studyCrossRefGoogle Scholar
  5. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. CrossRefGoogle Scholar
  6. Deep A, Pandey CP, Nandan H, Purohit KD, Singh N, Singh J, Srivastava AK, Ojha N (2019) Evaluation of ambient air quality in Dehradun city during 2011-2014. J Earth Syst Sci.
  7. Fishman, J., Wozniak, A. E., and Creilson, J. K. (2003), Global distribution of tropospheric ozone from satellite measurements using the empirically corrected tropospheric ozone residual technique: identification of the regional aspects of air pollution. Atmos Chem Phys, 3, 893–907,, 2003.
  8. Flemming J, Benedetti A, Inness A, Engelen RJ, Jones L, Huijnen V, Remy S, Parrington M, Suttie M, Bozzo A, Peuch V-H, Akritidis D, Katragkou E (2017) The CAMS interim reanalysis of carbon monoxide, ozone and aerosol for 2003–2015. Atmos Chem Phys 17:1945–1983. CrossRefGoogle Scholar
  9. Gaur A, Tripathi SN, Kanawade VP, Tare V, Shukla SP (2014) Four-year measurements of trace gases (SO2, NOx, CO, and O3) at an urban location, Kanpur, in northern India. J Atmos Chem 71:283–301. CrossRefGoogle Scholar
  10. Ghodichore N, Vinnarasi R, Dhanya CT, Roy SB (2018) Reliability of reanalysis products in simulating precipitation and temperature characteristics over India. J Earth Syst Sci 127.
  11. Ghude SD, Jain SL, Arya BC, Beig G, Ahammed YN, Kumar A, Tyagi B (2008) Ozone in ambient air at a tropical megacity, Delhi: characteristics, trends and cumulative ozone exposure indices. J Atmos Chem 60:237–252. CrossRefGoogle Scholar
  12. Ghude SD, Jena C, Chate DM, Beig G, Pfister GG, Kumar R, Ramanathan V (2014) Reduction in Indian crop yield due to ozone. Geophys Res Lett 41(51971):5685–5691. CrossRefGoogle Scholar
  13. Ghude SD, Chate DM, Jena C, Beig G, Kumar R, Barth MC, Pfister GG, Fadnavis S, Pithani P (2016) Premature mortality in India due to PM2.5 and ozone exposure. Geophys Res Lett 43:4650–4658. CrossRefGoogle Scholar
  14. Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282CrossRefGoogle Scholar
  15. Girach IA, Nair PR (2014) Carbon monoxide over Indian region as observed by MOPITT. Atmos Environ 99:599–609. CrossRefGoogle Scholar
  16. Girach IA, Ojha N, Nair PR, Pozzer A, Tiwari YK, Kumar KR, Lelieveld J (2017) Variations in O3, CO, and CH4 over the bay of Bengal during the summer monsoon season: shipborne measurements and model simulations. Atmos Chem Phys 17:257–275. CrossRefGoogle Scholar
  17. Inness A, Baier F, Benedetti A, Bouarar I, Chabrillat S, Clark H, Clerbaux C, Coheur P, Engelen RJ, Errera Q, Flemming J, George M, Granier C, Hadji-Lazaro J, Huijnen V, Hurtmans D, Jones L, Kaiser JW, Kapsomenakis J, Lefever K, Leitão J, Razinger M, Richter A, Schultz MG, Simmons AJ, Suttie M, Stein O, Thépaut J-N, Thouret V, Vrekoussis M, Zerefos C, the MACC team (2013) The MACC reanalysis: an 8 yr data set of atmospheric composition. Atmos Chem Phys 13:4073–4109. CrossRefGoogle Scholar
  18. Inness A, Blechschmidt A-M, Bouarar I, Chabrillat S, Crepulja M, Engelen RJ, Eskes H, Flemming J, Gaudel A, Hendrick F, Huijnen V, Jones L, Kapsomenakis J, Katragkou E, Keppens A, Langerock B, de Mazière M, Melas D, Parrington M, Peuch VH, Razinger M, Richter A, Schultz MG, Suttie M, Thouret V, Vrekoussis M, Wagner A, Zerefos C (2015) Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF’s composition-IFS. Atmos Chem Phys 15:5275–5303. CrossRefGoogle Scholar
  19. Jacob D (1999) Introduction to atmospheric chemistry. Princeton University Press, PrincetonChapter 12, pp 232–245Google Scholar
  20. Janssens-Maenhout G, Crippa M, Guizzardi D, Dentener F, Muntean M, Pouliot G, Keating T, Zhang Q, Kurokawa J, Wankmüller R, Denier van der Gon H, Kuenen JJP, Klimont Z, Frost G, Darras S, Koffi B, Li M (2015) HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos Chem Phys 15:11411–11432. CrossRefGoogle Scholar
  21. Kaiser JW, Heil A, Andreae MO, Benedetti A, Chubarova N, Jones L, Morcrette J-J, Razinger M, Schultz MG, Suttie M, van der Werf GR (2012) Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9:527–554. CrossRefGoogle Scholar
  22. Kleinman L, Lee YN, Springston SR, Nunnermacker L, Zhou X, Brown R, Hallock K, Klotz P, Leahy D, Lee JH, Newman L (1994) Ozone formation at a rural site in the southern United States. J Geophys Res 99:3469–3482CrossRefGoogle Scholar
  23. Kumar R, Naja M, Venkataramani S, Wild O (2010) Variations in surface ozone at Nainital: A highaltitude site in the central Himalayas, J Geophys Res, 115, D16302,
  24. Kumar R, Naja M, Satheesh SK, Ojha N, Joshi H, Sarangi T, Pant P, Dumka UC, Hegde P, Venkataramani S (2011) Influences of the springtime northern Indian biomass burning over the Central Himalayas. J Geophys Res 116:D19302. CrossRefGoogle Scholar
  25. Kumar R, Naja M, Pfister GG, Barth MC, Wiedinmyer C, Brasseur GP (2012) Simulations over South Asia using the weather research and forecasting model with chemistry (WRF-Chem): chemistry evaluation and initial results. Geosci Model Dev 5:619–648. CrossRefGoogle Scholar
  26. Kumar R, Barth MC, Pfister GG, Delle Monache L, Lamarque JF, Archer-Nicholls S, Tilmes S, Ghude SD, Wiedinmyer C, Naja M, Walters S (2018a) How will air quality change in South Asia by 2050? J Geophys Res-Atmos 123:1840–1864. CrossRefGoogle Scholar
  27. Kumar R, Peuch V-H, Crawford JH, Brasseur G (2018b) Five steps to improve air-quality forecasts. Nature 561:27–29. CrossRefGoogle Scholar
  28. Kumar A, Singh N, Anshumali, R. S (2018c) Evaluation and utilization of MODIS and CALIPSO aerosol retrievals over a complex terrain in Himalaya. Remote Sensing of Environ.
  29. Kumari S, Verma N, Lakhani A, Tiwari S, Kandikonda MK (2018) Tropospheric ozone enhancement during post-harvest crop-residue fires at two downwind sites of the indo-Gangetic plain. Environ Sci Pollut Res 25(19):18879–18893. CrossRefGoogle Scholar
  30. Kurokawa J, Ohara T, Morikawa T, Hanayama S, Greet J-M, Fukui T, Kawashima K, Akimoto H (2013) Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: regional emission inventory in ASia (REAS) version 2. Atmos Chem Phys 13:11019–11058. CrossRefGoogle Scholar
  31. Lal S, Sahu LK, Venkataramani S, Rajesh TA, Modh KS (2008) Distributions of O3, CO and NMHCs over the rural sites in Central India. J Atmos Chem 61:73–84. CrossRefGoogle Scholar
  32. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–371CrossRefGoogle Scholar
  33. Lelieveld J, Bourtsoukidis E, Brühl C, Fischer H, Fuchs H, Harder H, Hofzumahaus A, Holland F, Marno D, Neumaier M, Pozzer A, Schlager H, Williams J, Zahn A, Ziereis H (2018) The south Asian monsoon—pollution pump and purifier. Science 361(6399):270–273. CrossRefGoogle Scholar
  34. Lüthi ZL, Škerlak B, Kim S-W, Lauer A, Mues A, Rupakheti M, Kang S (2015) Atmospheric brown clouds reach the Tibetan plateau by crossing the Himalayas. Atmos Chem Phys 15:6007–6021. CrossRefGoogle Scholar
  35. Mahata KS, Rupakheti M, Panday AK, Bhardwaj P, Naja M, Singh A, Mues A, Cristofanelli P, Pudasainee D, Bonasoni P, Lawrence MG (2018) Observation and analysis of spatiotemporal characteristics of surface ozone and carbon monoxide at multiple sites in the Kathmandu Valley, Nepal. Atmos Chem Phys 18:14113–14132. CrossRefGoogle Scholar
  36. Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643CrossRefGoogle Scholar
  37. Mitra AK, Bohra AK, Rajeevan MN, Krishnamurthy TN (2009) Daily Indian precipitation analysis formed from a merge of rain-gauge data with the TRMM TMPA satellite-derived rainfall estimates. J Meteor Soc Japan 87A:265–279CrossRefGoogle Scholar
  38. Monks PS, Archibald AT, Colette A, Cooper O, Coyle M, Derwent R, Fowler D, Granier C, Law KS, Mills GE, Stevenson DS, Tarasova O, Thouret V, von Schneidemesser E, Sommariva R, Wild O, Williams ML (2015) Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos Chem Phys 15:8889–8973. CrossRefGoogle Scholar
  39. Nair PR, David LM, Girach IA, George KS (2011) Ozone in the marine boundary layer of bay of Bengal during post-winter period: spatial pattern and role of meteorology. Atmos Environ 45:4671–4681. CrossRefGoogle Scholar
  40. Nair PR, Revathy SA, David LM, Girach IA, Kavitha M (2018) Decadal changes in surface ozone at the tropical station Thiruvananthapuram (8.542° N, 76.858° E), India: effects of anthropogenic activities and meteorological variability. Environ Sci Pollut Res 25:14827–14843. CrossRefGoogle Scholar
  41. Ojha N, Naja M, Singh KP, Sarangi T, Kumar R, Lal S, Lawrence MG, Butler TM, Chandola HC (2012) Variabilities in ozone at a semi-urban site in the indo-Gangetic plain region: association with the meteorology and regional processes. J Geophys Res 117:D20301. CrossRefGoogle Scholar
  42. Ojha N, Pozzer A, Rauthe-Schöch A, Baker AK, Yoon J, Brenninkmeijer CAM, Lelieveld J (2016) Ozone and carbon monoxide over India during the summer monsoon: regional emissions and transport. Atmos Chem Phys 16:3013–3032. CrossRefGoogle Scholar
  43. Ojha N, Pozzer A, Akritidis D, Lelieveld J (2017) Secondary ozone peaks in the troposphere over the Himalayas. Atmos Chem Phys 17:6743–6757. CrossRefGoogle Scholar
  44. Oltmans SJ, Levy H (1994) Surface ozone measurements from a global network. Atmos Environ 28(1):9–24CrossRefGoogle Scholar
  45. Pandit MK (2013) The Himalayas must be protected. Nature 501:283CrossRefGoogle Scholar
  46. Pant GB, Kumar PP, Revadekar JV, Singh N (2018) Climate change in the Himalayas. Springer InternationalISBN 978-3-319-61653-7.
  47. Pozzer A, Zimmermann P, Doering UM, van Aardenne J, Tost H, Dentener F, Janssens-Maenhout G, Lelieveld J (2012) Effects of business-as-usual anthropogenic emissions on air quality. Atmos Chem Phys 12:6915–6937. CrossRefGoogle Scholar
  48. Putero D, Marinoni A, Bonasoni P, Calzolari F, Rupakheti M, Cristofanelli P (2018) Black carbon and ozone variability at the Kathmandu Valley and at the southern Himalayas: a comparison between a “hot spot” and a downwind high-altitude site. Aerosol Air Qual Res 18:623–635. CrossRefGoogle Scholar
  49. Ramanathan V, Agrawal M, Akimoto H, Aufhammer M, Devotta S, Emberson L, Hasnain SI, Iyngararasan M, Jayaraman A, Lawrance M, Nakajima T, Oki T, Rodhe H, Ruchirawat M, Tan SK, Vincent JY, W J, Yang D, Zhang YH, Autrup H, Barregard L, Bonasoni P, Brauer M, Brunekreef B, Carmichael G, Chung CE, Dahe J, Feng Y, Fuzzi S, Gordon T, Gosain AK, Htun N, Kim J, Mourato S, Naeher L, Navasumrit P, Ostro B, Panwar T, Rahman MR, Ramana MV, Rupakheti M, Settachan D, Singh AK, Helen GS, Tan PV, Viet PH, Yinlong J, Yoon SC, Chang W-C, Wang X, Zelikoff J, Zhu A (2008) Atmospheric brown clouds: regional assessment report with focus on Asia. United Nations Environment Programme, NairobiGoogle Scholar
  50. Rao ST, Jia-Yeaong K, Berman S, Zhang K, Mao H (2003) Summertime characteristics of the atmospheric boundary layer and relationships to ozone levels over the eastern United States. Pure Appl Geophys 160:21–55CrossRefGoogle Scholar
  51. Reddy KK, Naja M, Ojha N, Mahesh P, Lal S (2012) Influences of the boundary layer evolution on surface ozone variations at a tropical rural site in India. J Earth Syst Sci 121(4):911–922CrossRefGoogle Scholar
  52. Rolph G, Stein A, Stunder B (2017) Real-time environmental applications and display sYstem: READY. Environ Model Softw 95:210–228. CrossRefGoogle Scholar
  53. Sarangi T, Naja M, Ojha N, Kumar R, Lal S, Venkataramani S, Kumar A, Sagar R, Chandola HC (2014) First simultaneous measurements of ozone, CO, and NOy at a high-altitude regional representative site in the Central Himalayas. J Geophys Res Atmos 119:1592–1611. CrossRefGoogle Scholar
  54. Schultz MG, Schröder S, Lyapina O, Cooper O, Galbally I, Petropavlovskikh I, von Schneidemesser E, Tanimoto H, Elshorbany Y, Naja M, Seguel R, Dauert U, Eckhardt P, Feigenspahn S, Fiebig M, Hjellbrekke AG, Hong YD, Christian Kjeld P, Koide H, Lear G, Tarasick D, Ueno M, Wallasch M, Baumgardner D, Chuang MT, Gillett R, Lee M, Molloy S, Moolla R, Wang T, Sharps K, Adame JA, Ancellet G, Apadula F, Artaxo P, Barlasina M, Bogucka M, Bonasoni P, Chang L, Colomb A, Cuevas E, Cupeiro M, Degorska A, Ding A, Fröhlich M, Frolova M, Gadhavi H, Gheusi F, Gilge S, Gonzalez MY, Gros V, Hamad SH, Helmig D, Henriques D, Hermansen O, Holla R, Huber J, Im U, Jaffe DA, Komala N, Kubistin D, Lam KS, Laurila T, Lee H, Levy I, Mazzoleni C, Mazzoleni L, McClure-Begley A, Mohamad M, Murovic M, Navarro-Comas M, Nicodim F, Parrish D, Read KA, Reid N, Ries L, Saxena P, Schwab JJ, Scorgie Y, Senik I, Simmonds P, Sinha V, Skorokhod A, Spain G, Spangl W, Spoor R, Springston SR, Steer K, Steinbacher M, Suharguniyawan E, Torre P, Trickl T, Weili L, Weller R, Xu X, Xue L, Zhiqiang M (2017) Tropospheric ozone assessment report: database and metrics data of global surface ozone observations. Elem Sci Anth 5.
  55. Sharma A, Sharma A, Rohtash K, Mandal TK (2016) Influence of ozone precursors and particulate matter on the variation of surface ozone at an urban site of Delhi, India. Sustain Environ Res.
  56. Sharma A, Ojha N, Pozzer A, Mar KA, Beig G, Lelieveld J, Gunthe SS (2017) WRF-Chem simulated surface ozone over South Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms. Atmos Chem Phys 17:14393–14413. CrossRefGoogle Scholar
  57. Sharma A, Ojha N, Pozzer A, Beig G, Gunthe SS (2019) Revisiting the crop yield loss in India attributable to ozone. Atmospheric Environment: X.
  58. Shukla K, Srivastava PK, Banerjee T, Aneja VP (2016) Trend and variability of atmospheric ozone over middle indo-Gangetic plain: impacts of seasonality and precursor gases. Environ Sci Pollut Res 24(1):164–179. CrossRefGoogle Scholar
  59. Singh N, Solanki R, Ojha N, Janssen RHH, Pozzer A, Dhaka SK (2016) Boundary layer evolution over the Central Himalayas from radio wind profiler and model simulations. Atmos Chem Phys 16:10559–10572. CrossRefGoogle Scholar
  60. Stehr JW, Ball WP, Dickerson RR, Doddridge BG, Piety CA, Johnson JE (2002) Latitudinal gradients in O3 and CO during INDOEX 1999. J Geophys Res 107(D19):8015. CrossRefGoogle Scholar
  61. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Amer Meteor Soc 96:2059–2077. CrossRefGoogle Scholar
  62. Takegawa N, Kondo Y, Ko M, Koike M, Kita K, Blake DR, Hu W, Scott C, Kawakami S, Miyazaki Y, Russell-Smith J, Ogawa T (2003) Photochemical production of O3 in biomass burning plumes in the boundary layer over northern Australia. Geophys Res Lett 30(10):1500. CrossRefGoogle Scholar
  63. Venkataraman C, Habib G, Kadamba D, Shrivastava M, Leon J-F, Crouzille B, Boucher O, Streets DG (2006) Emissions from open biomass burning in India: integrating the inventory approach with high-resolution moderate resolution imaging Spectroradiometer (MODIS) active-fire and land cover data. Glob Biogeochem Cycles 20:GB2013. CrossRefGoogle Scholar
  64. Zhang J, Rao ST (1999) The role of vertical mixing in the temporal evolution of ground-level ozone concentrations. J Appl Meteorol 38:1674–1691CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Space and Atmospheric Sciences DivisionPhysical Research LaboratoryAhmedabadIndia
  2. 2.Space Physics LaboratoryVikram Sarabhai Space CentreThiruvananthapuramIndia
  3. 3.Graphic Era (Deemed to be University)DehradunIndia
  4. 4.Aryabhatta Research Institute of Observational SciencesNainitalIndia
  5. 5.European Centre for Medium-Range Weather ForecastsReadingUK

Personalised recommendations