Environmental Science and Pollution Research

, Volume 26, Issue 16, pp 16470–16481 | Cite as

Syagrus oleracea–activated carbon prepared by vacuum pyrolysis for methylene blue adsorption

  • Kleber Jean Leite dos Santos
  • Grazielle Emanuella de Souza dos Santos
  • Ícaro Mychel Gomes Leite de Sá
  • Sandra Helena Vieira de Carvalho
  • João Inácio Soletti
  • Lucas MeiliEmail author
  • José Leandro da Silva Duarte
  • Mozart Daltro Bispo
  • Guilherme Luiz Dotto
Research Article


This work aims to produce activated carbon from the endocarp of Syagrus oleracea by vacuum pyrolysis and evaluate its potential as an adsorbent. The effects of pyrolysis temperature (400 °C, 500 °C, 600 °C, and 700 °C), particle diameter (0.467 mm, 0.267 mm, and lower than 0.234 mm), and activation agent (H2SO4, H2PO3, and KOH) on the potential for methylene blue adsorption were investigated. In addition, kinetics and adsorption equilibrium were evaluated. The best condition found was particle diameter < 0.234 mm, final pyrolysis temperature of 700 °C, and using KOH. Adsorption kinetics followed pseudo-second order, with equilibrium reached within 20 min. Isotherms followed the Freundlich model. Values of adsorption capacity were in the order of 30 mg/g. Thermodynamic parameters indicated that adsorption occurred spontaneously with a reduction in the heterogeneity of the solid interface/solution. The results obtained demonstrate the great adsorption capacity of the activated carbon prepared from endocarp of Syagrus oleracea via vacuum pyrolysis for the removal of up to 98% methylene blue from aqueous solutions.


Biomass Activated carbon Pyrolysis Removal Dyes 



The authors thank the National Council for Scientific and Technological Development (CNPq/Brazil), the Coordination for the Improvement of Higher Education Personnel (CAPES/Brazil), and the Foundation for Research Support of the State of Alagoas (FAPEAL/Brazil).


  1. Ahmed MJ, Okoye PU, Hummadi EH, Hameed BH (2019) High-performance porous biochar from the pyrolysis of natural and renewable seaweed (Gelidiella acerosa) and its application for the adsorption of methylene blue. Bioresour Technol 278:159–164 ISSN 0960-8524CrossRefGoogle Scholar
  2. Alharbi OML, Basheer Al A, Khattab RA, Ali I (2018) Health and environmental effects of persistent organic pollutants. J Mol Liq 263:442–453, ISSN 0167-7322. CrossRefGoogle Scholar
  3. Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112(10):5073–5091. CrossRefGoogle Scholar
  4. Ali I (2018) Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: batch and column operations. J Mol Liq 271:677–685, ISSN 0167-7322. CrossRefGoogle Scholar
  5. Ali I, Aboul-Enein H (2006) Instrumental methods in metal ion speciation. CRC Press, Boca Raton. CrossRefGoogle Scholar
  6. Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667CrossRefGoogle Scholar
  7. Ali I, Khan TA, Asim M (2012) Removal of arsenate from groundwater by electrocoagulation method. Environ Sci Pollut Res 19:1668–1676. CrossRefGoogle Scholar
  8. Ali I, AL-Othman ZA, Alwarthan A (2016) Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J Mol Liq 221:1168–1174, ISSN 0167–7322. CrossRefGoogle Scholar
  9. Amin NK (2008) Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination 223:152–161. CrossRefGoogle Scholar
  10. Azargohar R, Dalai AK (2008) Steam and KOH activation of biochar: experimental and modeling studies. Microporous Mesoporous Mater 110:413–421. CrossRefGoogle Scholar
  11. Barka N, Ouzaouit K, Abdennouri M, El Makhfouk M (2013) Dried prickly pear cactus (Opuntia ficus indica) cladodes as a low-cost and eco-friendly biosorbent for dyes removal from aqueous solutions. J Taiwan Inst Chem Eng 44:52–60. CrossRefGoogle Scholar
  12. Bembnowska A, Pełech R, Milchert E (2003) Adsorption from aqueous solutions of chlorinated organic compounds onto activated carbons. J Colloid Interface Sci 265:276–282. CrossRefGoogle Scholar
  13. Besinella-Junior E, Matsuo MS, Walz M et al (2009) Effects of temperature and particle size on the adsorption of remazol golden yellow RNL in activated carbon. Acta Sci - Technol 31:185–193. Google Scholar
  14. Bharti V, Vikrant K, Goswami M, Tiwari H, Sonwani RK, Lee J, Tsang DCW, Kim KH, Saeed M, Kumar S, Rai BN, Giri BS, Singh RS (2019) Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environ Res 171:356–364 ISSN 0013-9351CrossRefGoogle Scholar
  15. Cardoso JKB, Nanami DSY, Zanutto CA (2018) Description and identification of two new diseases of guariroba palm (Syagrus oleraceae) in Brazil.
  16. Chen S, Xu ZP, Zhang Q, Lu GQM, Hao ZP, Liu S (2009) Studies on adsorption of phenol and 4-nitrophenol on MgAl-mixed oxide derived from MgAl-layered double hydroxide. Sep Purif Technol 67:194–200. CrossRefGoogle Scholar
  17. Chen Y, Zhu Y, Wang Z, Li Y, Wang L, Ding L, Gao X, Ma Y, Guo Y (2011) Application studies of activated carbon derived from rice husks produced by chemical-thermal process - a review. Adv Colloid Interf Sci 163:39–52. CrossRefGoogle Scholar
  18. Cheremisinoff PN, Ellerbush F (1979) Carbon adsorption hand book. Ann Arbor Science Publishers, MichiganGoogle Scholar
  19. Chirayil CJ, Joy J, Mathew L, Mozetic M, Koetz J, Thomas S (2014) Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind Crop Prod 59:27–34. CrossRefGoogle Scholar
  20. Deng H, Lu J, Li G, Zhang G, Wang X (2011) Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chem Eng J 172:326–334. CrossRefGoogle Scholar
  21. Di Blasi C, Di Blasi C, Hernandez EG et al (2000) Radiative pyrolysis of single moist wood particles. Ind Eng Chem Res 39:873–882. CrossRefGoogle Scholar
  22. Ding Z, Wan Y, Hu X, Wang S, Zimmerman AR, Gao B (2016) Sorption of lead and methylene blue onto hickory biochars from different pyrolysis temperatures: importance of physicochemical properties. J Ind Eng Chem 37:261–267. CrossRefGoogle Scholar
  23. Dotto GL, Meili L, De Souza Abud AK et al (2016) Comparison between Brazilian agro-wastes and activated carbon as adsorbents to remove Ni (II) from aqueous solutions. Water Sci Technol 73:2713–2721. CrossRefGoogle Scholar
  24. Farahani M, Abdullah SRS, Hosseini S, Shojaeipour S, Kashisaz M (2011) Adsorption-based cationic dyes using the carbon active sugarcane bagasse. Procedia Environ Sci 10:203–208. CrossRefGoogle Scholar
  25. Flores-Cano JV, Sánchez-Polo M, Messoud J, Velo-Gala I, Ocampo-Pérez R, Rivera-Utrilla J (2016) Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells. J Environ Manag 169:116–125. CrossRefGoogle Scholar
  26. Foletto EL, Weber CT, Paz DS, Mazutti MA, Meili L, Bassaco MM, Collazzo GC (2013) Adsorption of leather dye onto activated carbon prepared from bottle gourd: equilibrium, kinetic and mechanism studies. Water Sci Technol 67:201–209. CrossRefGoogle Scholar
  27. Fonts I, Azuara M, Gea G, Murillo MB (2009) Study of the pyrolysis liquids obtained from different sewage sludge. J Anal Appl Pyrolysis 85:184–191. CrossRefGoogle Scholar
  28. Foo KY, Hameed BH (2009) An overview of landfill leachate treatment via activated carbon adsorption process. J Hazard Mater 171:54–60. CrossRefGoogle Scholar
  29. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. CrossRefGoogle Scholar
  30. Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:358–471Google Scholar
  31. Fu J, Chen Z, Wang M, Liu S, Zhang J, Zhang J, Han R, Xu Q (2015) Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J 259:53–61. CrossRefGoogle Scholar
  32. Gao L, Goldfarb JL (2019) Solid waste to biofuels and heterogeneous sorbents via pyrolysis of wheat straw in the presence of fly ash as an in situ catalyst. J Anal Appl Pyrolysis 137:96–105 ISSN 0165-2370CrossRefGoogle Scholar
  33. Ghaedi M, Hajjati S, Mahmudi Z, Tyagi I, Agarwal S, Maity A, Gupta VK (2015) Modeling of competitive ultrasonic assisted removal of the dyes – methylene blue and safranin-O using Fe3O4 nanoparticles. Chem Eng J 268:28–37, ISSN 1385-8947. CrossRefGoogle Scholar
  34. Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) Studies in adsorption part XI: a system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc 1:3973–3993CrossRefGoogle Scholar
  35. Guo F, Li X, Jiang X et al (2018) Characteristics and toxic dye adsorption of magnetic activated carbon prepared from biomass waste by modified one-step synthesis. Colloids Surf A Physicochem Eng Asp 555:43–54CrossRefGoogle Scholar
  36. Gupta VK, Jain CK, Ali I, Chandra S, Agarwal S (2002) Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. Water Res 36(10):2483–2490 ISSN 0043-1354CrossRefGoogle Scholar
  37. Gupta VK, Ali I, Mohan SD (2003) Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents. J Colloid Interface Sci 265(2):257–264, ISSN 0021-9797. CrossRefGoogle Scholar
  38. Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20:1–18CrossRefGoogle Scholar
  39. Hameed BH, Ahmad AL, Latiff KNA (2007) Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes Pigments 75:143–149. CrossRefGoogle Scholar
  40. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124. CrossRefGoogle Scholar
  41. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. CrossRefGoogle Scholar
  42. Hossain MK, Strezov Vladimir V, Chan KY et al (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manag 92:223–228. CrossRefGoogle Scholar
  43. Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - a comparative study. Dyes Pigments 51:25–40. CrossRefGoogle Scholar
  44. Khan TA, Sharma S, Ali I (2011) Adsorption of rhodamine B dye from aqueous solution onto acid activated mango (Magnifera indica) leaf powder: equilibrium, kinetic and thermodynamic studies. J Toxicol Environ Heal Sci 3:286–297Google Scholar
  45. Kim KH, Kim TS, Lee SM, Choi D, Yeo H, Choi IG, Choi JW (2013) Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis. Renew Energy 50:188–195. CrossRefGoogle Scholar
  46. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. K Sven Vetenskapsakademiens 24:1–39Google Scholar
  47. Lalvani SB, Wiltoski T, Hubner A, Weston A, Mandich N (1998) Removal of hexavalent chromium and metal cations by a selective and novel carbon adsorbent. Carbon 36:1219–1226CrossRefGoogle Scholar
  48. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. CrossRefGoogle Scholar
  49. Larous S, Meniai A-H (2016) Adsorption of diclofenac from aqueous solution using activated carbon prepared from olive stones. Int J Hydrog Energy 41:10380–10390. CrossRefGoogle Scholar
  50. Liu S, Li J, Xu S, Wang M, Zhang Y, Xue X (2019) A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature. Bioresour Technol 282:48–55 ISSN 0960-8524CrossRefGoogle Scholar
  51. Lozano-Castello D, Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A (2001) Preparation of activated carbons from Spanish anthracite I. Activation by KOH. Carbon N Y 39:741–749. CrossRefGoogle Scholar
  52. Mattson JS, Mark B II (1971) Activated carbon surface chemistry and adsorption from aqueous solution. Marcel Dekker, New YorkGoogle Scholar
  53. Meili L, Da Silva TS, Henrique DC et al (2017) Ouricuri (Syagrus coronata) fiber: a novel biosorbent to remove methylene blue from aqueous solutions. Water Sci Technol 75:106–114. CrossRefGoogle Scholar
  54. Meili L, Godoy RPS, Soletti JI, Carvalho SHV, Ribeiro LMO, Silva MGC, Vieira MGA, Gimenes ML (2018) Cassava (Manihot esculenta Crantz) stump biochar: physical/chemical characteristics and dye affinity. Chem Eng Commun 1–13.
  55. Meili L, Lins PV, Zanta CLPS, Soletti JI, Ribeiro LMO, Dornelas CB, Silva TL, Vieira MGA (2019) MgAl-LDH/biochar composites for methylene blue removal by adsorption. Appl Clay Sci 168:11–20. CrossRefGoogle Scholar
  56. Mitrogiannis D, Markou G, Çelekli A, Bozkurt H (2015) Biosorption of methylene blue onto Arthrospira platensis biomass: kinetic, equilibrium and thermodynamic studies. J Environ Chem Eng 3:670–680. CrossRefGoogle Scholar
  57. Mohanty P, Nanda S, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J Anal Appl Pyrolysis 104:485–493. CrossRefGoogle Scholar
  58. Mondal S, Sinha K, Aikat K, Halder G (2015) Adsorption thermodynamics and kinetics of ranitidine hydrochloride onto superheated steam activated carbon derived from mung bean husk. J Environ Chem Eng 3:187–195. CrossRefGoogle Scholar
  59. Onay O (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process Technol 88:523–531. CrossRefGoogle Scholar
  60. Pelech R, Bembnowska A, Milchert E (2005) Kinetics of adsorption of hydrocarbon chloro-derivatives from seven-component aqueous solution onto a thin layer of DTO-activated carbon. J Colloid Interface Sci 290:83–90. CrossRefGoogle Scholar
  61. Piccin JS Jr, Cadaval TRSA Jr, de Pinto LAA, Dotto GL (2017) Adsorption isotherms in liquid phase: experimental, modeling, and interpretations. In: Bonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Avila HE (eds) Adsorption processes for water treatment, pp 19–51CrossRefGoogle Scholar
  62. Pollard SJT, Fowler GD, Sollars CJ, Perry R (1992) Low cost adsorbents for waste and wastewater treatment. Sci Total Environ 116:31–52CrossRefGoogle Scholar
  63. Radovic LR, Moreno-Castilla C, Rivera-Utrilla J (2001) Carbon materials as adsorbents in aqueous solutions. In: Chemistry and physics carbon, pp 227–406Google Scholar
  64. Rajendran S, Khan MM, Gracia F, Qin J, Gupta VK, Arumainathan S (2016) Ce3+ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Reports 6:31641Google Scholar
  65. Rawat AP, Kumar V, Singh DP (2019) A combined effect of adsorption and reduction potential of biochar derived from Mentha plant waste on removal of methylene blue dye from aqueous solution. Sep Sci Technol 1–15Google Scholar
  66. Rodriguez-Reinoso F (2002) Production and applications of activated carbons. In: Handbook of porous solids, pp 1766–1827CrossRefGoogle Scholar
  67. Ruthven DM (1984) Principles of adsorption and adsorption processes, 7th edn. Springer, BerlinGoogle Scholar
  68. Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–172. CrossRefGoogle Scholar
  69. Shafiq M, Alazba AA, Amin MT (2019) Synthesis, characterization, and application of date palm leaf waste-derived biochar to remove cadmium and hazardous cationic dyes from synthetic wastewater. Arab J Geosci 12:63CrossRefGoogle Scholar
  70. Shebani AN, van Reenen AJ, Meincken M (2009) The effect of wood extractives on the thermal stability of different wood-LLDPE composites. Thermochim Acta 481:52–56. CrossRefGoogle Scholar
  71. Shen Y, Fu Y (2018a) KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption. Mater Today Energy 9:397–405. CrossRefGoogle Scholar
  72. Shen Y, Fu Y (2018b) KOH-activated rice husk char via CO2pyrolysis for phenol adsorption. Mater Today Energy 9:397–405. CrossRefGoogle Scholar
  73. Silva TS, Meili L, Carvalho SHV, Soletti JI, Dotto GL, Fonseca EJS (2017) Kinetics, isotherm, and thermodynamic studies of methylene blue adsorption from water by Mytella falcata waste. Environ Sci Pollut Res 24:19927–19937. CrossRefGoogle Scholar
  74. Silva-cardoso IMDA, De Souza AM (2017) Scientia Horticulturae the palm tree Syagrus oleracea Mart. (Becc.): a review. Sci Hortic (Amsterdam) 225:65–73. CrossRefGoogle Scholar
  75. Sotelo JL, Rodriguez A, Alvarez S, Garcia J (2012) Removal of caffeine and diclofenac on activated carbon in fixed bed column. Chem Eng Res Des 90:967–974. CrossRefGoogle Scholar
  76. Tan IAW, Ahmad AL, Hameed BH (2008) Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination 225:13–28. CrossRefGoogle Scholar
  77. Tancredi N, Medero N, Möller F, Píriz J, Plada C, Cordero T (2004) Phenol adsorption onto powdered and granular activated carbon, prepared from Eucalyptus wood. J Colloid Interface Sci 279:357–363. CrossRefGoogle Scholar
  78. Tiwari D, Bhunia H, Bajpai PK (2018) Adsorption of CO2on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies. Appl Surf Sci 439:760–771. CrossRefGoogle Scholar
  79. Treviño-Cordero H, Juárez-Aguilar LG, Mendoza-Castillo DI, Hernández-Montoya V, Bonilla-Petriciolet A, Montes-Morán MA (2013) Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water. Ind Crop Prod 42:315–323. CrossRefGoogle Scholar
  80. WHO (2013) The world health report 2013: research for universal health coverage. In: World Health OrganizationGoogle Scholar
  81. Williams PT, Reed AR (2006) Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass Bioenergy 30:144–152. CrossRefGoogle Scholar
  82. Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S (2014) Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manag 146:189–197. CrossRefGoogle Scholar
  83. Xu X, Cao X, Zhao L, Wang H, Yu H, Gao B (2013) Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ Sci Pollut Res 20:358–368. CrossRefGoogle Scholar
  84. Yao Y, Gao B, Chen J, Zhang M, Inyang M, Li Y, Alva A, Yang L (2013) Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential. Bioresour Technol 138:8–13. CrossRefGoogle Scholar
  85. Yu Q, Zhao H, Zhao H, Sun S, Ji X, Li M, Wang Y (2019) Preparation of tobacco-stem activated carbon from using response surface methodology and its application for water vapor adsorption in solar drying system. Sol Energy 177:324–336. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kleber Jean Leite dos Santos
    • 1
    • 2
  • Grazielle Emanuella de Souza dos Santos
    • 2
  • Ícaro Mychel Gomes Leite de Sá
    • 2
  • Sandra Helena Vieira de Carvalho
    • 1
  • João Inácio Soletti
    • 1
  • Lucas Meili
    • 2
    Email author
  • José Leandro da Silva Duarte
    • 2
    • 3
  • Mozart Daltro Bispo
    • 1
  • Guilherme Luiz Dotto
    • 4
  1. 1.Laboratorio de Sistemas de Separação e Otimização de Processos (LASSOP), Centro de TecnologiaUniversidade Federal de AlagoasMaceióBrazil
  2. 2.Laboratorio de Processos (LaPro), Centro de TecnologiaUniversidade Federal de AlagoasMaceióBrazil
  3. 3.Laboratório de Eletroquímica Aplicada, Instituto de Química e BiotecnologiaUniversidade Federal de AlagoasMaceióBrazil
  4. 4.Departamento de Engenharia Química, Centro de TecnologiaUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations