Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 16, pp 15754–15766 | Cite as

Adaptive observation-based subsurface conceptual site modeling framework combining interdisciplinary methodologies: a case study on advancing the understanding of a groundwater nitrate plume occurrence

  • Ahamefula U. UtomEmail author
  • Ulrike Werban
  • Carsten Leven
  • Christin Müller
  • Peter Dietrich
Review Article
  • 321 Downloads

Abstract

Traditional site characterization and laboratory testing methods are insufficient to quantify and conceptualize subsurface contaminant source-pathway-receptor heterogeneity issues, as they hamper groundwater risk assessment and water resource management using mathematical modeling. To address these issues, we propose an adaptive observation-based conceptual site modeling framework, which emphasizes the need for the iterative testing of hypotheses centered on specific questions with clearly defined objectives using interdisciplinary tools (including, but not limited to, geology, microbiology, hydrogeology, geophysics, and the chemistry of solute fate and transport). Under this framework, we present a case study aimed at a goal-oriented investigation of the source and occurrence of a groundwater nitrate plume previously identified using chemical concentration data from sparsely distributed, conventional, and regional groundwater monitoring wells. These investigations occurred in stages, with the first comprehensive outcome of cost-efficient, non-invasive surface geophysical surveys localizing subsurface heterogeneities laying the groundwork for collaborative, minimally invasive, direct push-based investigations followed by groundwater chemical and stable isotope analyses for source fingerprinting and bioprocess evaluation. Despite the obvious need for further refinement of the conceptual site model as new data become available, we illustrate that the step-by-step integrative framework was useful for systematic maximization of the strengths of different investigation methodologies. Such frameworks and approaches should be encouraged for successful environmental site characterization, monitoring, and modeling.

Keywords

Observation-based CSM framework Multidisciplinary tools Site characterization Case study example Groundwater nitrate Environmental science and engineering 

Notes

Acknowledgements

The authors acknowledge the following people for providing technical assistance in the field and laboratory and critiquing some parts of this manuscript: Dr. Hendrik Paasche, Helko Kotas, Andreas Schoßland, and Marco Pohle (Monitoring- and Exploration Technologies department, Helmholtz Centre for Environment Research – UFZ, Leipzig), Dr. Sybille Mothes (Analytical Chemistry department, UFZ, Leipzig), Dr. Kay Knöller (Catchment Hydrology department, UFZ, Halle), Dr. Carsten Vogt (Isotope Biogeochemistry department, UFZ, Halle), and Dr. Marc Schwientek and Dr. Thomas Wendel (Center for Applied Geoscience (ZAG), Eberhard Karls Universität Tübingen).

Funding information

This work was majorly supported by the German Academic Exchange Service (DAAD) scholarship awarded to the first author. This work was also partly supported by the Collaborative Research Center 1253 CAMPOS (Project 3: Floodplain Hydrology) funded by the German Research Foundation (DFG, Grant Agreement SFB 1253/1 2017).

References

  1. Akber Hassan WA, Jiang X (2012) Upscaling and its application in numerical simulation of long-term CO2 storage. Greenhouse Gas Sci Technol 2(6):408–418.  https://doi.org/10.1002/ghg.1306 CrossRefGoogle Scholar
  2. ASTM Standard E1689-95 (2014) Standard guide for developing conceptual site models for contaminated sites. ASTM International, USA. www.astm.org.  https://doi.org/10.1520/E1689-95R08 Google Scholar
  3. Atekwana EA, Atekwana EA (2010) Geophysical signatures of microbial activity at hydrocarbon contaminated sites: a review. Surv Geophys 31(2):247–283.  https://doi.org/10.1007/s10712-009-9089-8 CrossRefGoogle Scholar
  4. Barazzuoli P, Nocchi M, Rigati R, Salleolini M (2008) A conceptual and numerical model for groundwater management: a case study on coastal aquifer in southern Tuscany, Italy. Hydrogeol J 16(8):1557–1576.  https://doi.org/10.1007/s10040-008-0324-z CrossRefGoogle Scholar
  5. Barth JAC, Kappler A, Piepenbrink M, Werth C, Regenspurg S, Semprini L, Slater GF, Schüth C, Grathwohl P (2005) New challenges in biogeochemical gradient research. Eos Trans AGU 86(44):432–432.  https://doi.org/10.1029/2005EO440008 CrossRefGoogle Scholar
  6. Binley A, Hubbard SS, Huisman JA, Revil A, Robinson DA, Singha K, Slater LD (2015) The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour Res 51:3837–3866.  https://doi.org/10.1002/2015WR017016 CrossRefGoogle Scholar
  7. Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31(1):248–252.  https://doi.org/10.1021/es960383u CrossRefGoogle Scholar
  8. Burger J, Mayer HJ, Greenberg M, Powers CW, Volz CD, Gochfeld M (2006) Conceptual site models as a tool in evaluating ecological health: the case of the Department of Energy’s Amchitka Island nuclear test site. J Toxicol Environ Health 69:1217–1238.  https://doi.org/10.1080/15287390500360232 CrossRefGoogle Scholar
  9. Carrera J (1992) Methodological conceptualization of mathematical modelling. Math Comput Model 16(12):19–28.  https://doi.org/10.1016/0895-7177(92)90015-D CrossRefGoogle Scholar
  10. Christensen NB, Sorensen KI (1998) Surface and borehole electric and electromagnetic methods for hydro-geophysical investigations. Eur J Environ Eng Geophys 3:75–90Google Scholar
  11. Cirpka OA, Valocchi AJ (2007) Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state. Adv Water Resour 30(6–7):1668–1679.  https://doi.org/10.1016/j.advwatres.2006.05.022 CrossRefGoogle Scholar
  12. Cirpka OA, Dietrich P, Leven C (2017) Floodplain hydrology - P3 Structural controls of the hydrological functioning of a floodplain, in: CAMPOS - Catchment as Reactors. http://www.uni-tuebingen.de/forschung/forschungsschwerpunkte/sonderforschungsbereiche/sfb-1253/projects/p3-floodplain-hydrology.html Accessed 18 March 2018
  13. Crumbling DM, Groenjes C, Lesnik B, Lynch K, Shockley J, van Ee J, Howe RA, Keith LH, McKenna J (2001) Managing uncertainty in environmental decisions: applying the concept of effective data at contaminated sites could reduce costs and improve cleanups. Environ Sci Technol 35:404A–409A.  https://doi.org/10.1021/es012490g CrossRefGoogle Scholar
  14. Crumbling DM, Griffith J, Powell DM (2003) Improving decision quality: making the case for adopting next generation site characterization practices. Remediation J 13(2):91–111.  https://doi.org/10.1002/rem.10066 CrossRefGoogle Scholar
  15. Crumbling DM, Hayworth JS, Johnson RL, Moore M (2004a) The triad approach: a catalyst for maturing remediation practice. Remediation J 15:3–19.  https://doi.org/10.1002/rem.20029 CrossRefGoogle Scholar
  16. Crumbling DM, Hayworth JS, Call BA, Davis WM, Howe R, Miller DS, Johnson R (2004b) The maturing of the triad approach: avoiding misconceptions. Remediation J 14:81–96.  https://doi.org/10.1002/rem.20023 CrossRefGoogle Scholar
  17. Dietrich P, Leven C (2009) Direct push-technologies. In: Kirsch R (ed) Groundwater geophysics: a tool for hydrogeology. Springer, Berlin, pp 347–366.  https://doi.org/10.1007/978-3-540-88405-7_12 CrossRefGoogle Scholar
  18. Ehrlich A (1988) Risk assessment guidelines update. EPA 600/D-88/264. Environmental Protection Agency, Washington, D.C., U.SGoogle Scholar
  19. Elsner M (2010) Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J Environ Monit 12:2005–2031.  https://doi.org/10.1039/C0EM00277A CrossRefGoogle Scholar
  20. Falgàs E, Ledo J, Benjumea B, Queralt P, Marcuello A, Teixidó T, Martí A (2011) Integrating hydrogeological and geophysical methods for the characterization of a deltaic aquifer system. Surv Geophys 32(6):857–873.  https://doi.org/10.1007/s10712-011-9126-2 CrossRefGoogle Scholar
  21. French HK, Kästner M, van der Zee SEATM (2014) New approaches for low-invasive contaminated site characterization, monitoring and modelling. Environ Sci Pollut Res 21(15):8893–8896.  https://doi.org/10.1007/s11356-014-2840-9 CrossRefGoogle Scholar
  22. Gabàs A, Macau A, Benjumea B, Bellmunt F, Figueras S, Vilà M (2014) Combination of geophysical methods to support urban geophysical mapping. Surv Geophys 35(4):983–1002.  https://doi.org/10.1007/s10712-013-9248-9 CrossRefGoogle Scholar
  23. Gallardo LA, Meju MA (2003) Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys Res Lett 30:1658.  https://doi.org/10.1029/2003GL017370 CrossRefGoogle Scholar
  24. Gerhard JI, Keuper BH, Sleep BE (2014) Modeling source zone remediation. In: Keuper BH, Stroo HF, Vogel CM, Ward CH (eds) Chlorinated source zone remediation. Springer-Verlag, New York, pp 113–144Google Scholar
  25. Greenberg MS, Chapman PM, Allan IJ, Anderson KA, Apitz SE, Beegan C, Bridges TS, Brown SS, Cargill JG, McCulloch MC, Menzie CA, Shine JP, Parkerton TF (2014) Passive sampling methods for contaminated sediments: risk assessment and management. Integr Environ Assess Manag 10:224–236.  https://doi.org/10.1002/ieam.1511 CrossRefGoogle Scholar
  26. Griffiths NA, Jackson CR, McDonnell JJ, Klaus J, Du E, Bitew MM (2016) Dual nitrate isotopes clarify the role of biological processing and hydrologic flow paths on nitrogen cycling in subtropical low-gradient watersheds. J Geophys Res Biogeosci 121:422–437CrossRefGoogle Scholar
  27. Günther T, Rücker C, Spitzer K (2006) Three-dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion. Geophys J Int 166:506–517.  https://doi.org/10.1111/j.1365-246X.2006.03011.x CrossRefGoogle Scholar
  28. Hadley PW, Newell C (2014) The new potential for understanding groundwater contaminant transport. Ground Water 52(2):174–186.  https://doi.org/10.1111/gwat.12135 CrossRefGoogle Scholar
  29. Hassan AE (2004) Validation of numerical ground water models used to guide decision making. Ground Water 42(2):277–290.  https://doi.org/10.1111/j.1745-6584.2004.tb02674.x CrossRefGoogle Scholar
  30. Hausmann J, Steinel H, Kreck M, Werban U, Vienken T, Dietrich P (2013) Two-dimensional geomorphological characterization of a filled abandoned meander using geophysical methods and soil sampling. Geomorphol 201:335–343.  https://doi.org/10.1016/j.geomorph.2013.07.009 CrossRefGoogle Scholar
  31. Hermana R (2001) An introduction to electrical resistivity in geophysics. Am J Phys 69(9):943–952.  https://doi.org/10.1119/1.1378013 CrossRefGoogle Scholar
  32. Hinkle SR, Böhlke JK, Duff JK, Morgan DS, Weick RJ (2007) Aquifer-scale controls on the distribution of nitrate and ammonium in ground water near La Pine, Oregon, U.S.A. J Hydrol 333:486–503.  https://doi.org/10.1016/j.jhydrol.2006.09.013 CrossRefGoogle Scholar
  33. Interstate Technology and Regulatory Council (ITRC) (2003) Technical and regulatory guidance for the Triad approach: a new paradigm for environmental project management (SCM-1). Prepared by the ITRC Sampling, Characterization and Monitoring Team. http://www.itrcweb.org/SCM-1.pdf. Accessed 20.10.16
  34. Jakubick AT, Kahnt R (2002) Remediation oriented use of conceptual site models at WISMUT GmbH: remediation of the Trünzig tailings management area. In: Merkel BJ, Planer-Friedrich B, Wolkersdorfer C (eds) Uranium in the aquatic environment. Springer, Berlin, pp 9–24CrossRefGoogle Scholar
  35. Jarvis M, Larsson M (2001) Modeling macropore flow in soils: field validation and use for management purposes. In: National Research Council (ed) Conceptual models of flow and transport in the fractured vadose zone. National Academy Press, Washington, DC, pp 189–215Google Scholar
  36. Kapur JN (2015) Mathematical modelling, 2nd edn. New Age International, New DelhiGoogle Scholar
  37. Kästner M, Cassiani G (2009) ModelPROBE: model driven soil probing, site assessment and evaluation. Rev Environ Sci Biotechnol 8(2):131–136.  https://doi.org/10.1007/s11157-009-9157-z CrossRefGoogle Scholar
  38. Kearey P, Brooks M, Hill I (2002) An introduction to geophysical exploration, 3rd edn. Wiley-Blackwell, HobokenGoogle Scholar
  39. Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576CrossRefGoogle Scholar
  40. Kirchner JW, Feng X, Neal C (2000) Fractal stream chemistry and its implications for contaminant transport in catchments. Lett Nat 403:524–527.  https://doi.org/10.1038/35000537 CrossRefGoogle Scholar
  41. Knödel K (2007) Environmental geology – handbook of field methods and case studies. Springer, Berlin HeidelbergGoogle Scholar
  42. Konikow LF (2011) The secret to successful solute-transport modeling. Ground Water 49(2):144–159.  https://doi.org/10.1111/j.1745-6584.2010.00764.x CrossRefGoogle Scholar
  43. Konikow LF, Bredehoeft JD (1992) Groundwater models cannot be validated? Adv Water Resour 15:75–83.  https://doi.org/10.1016/0309-1708(92)90033-X CrossRefGoogle Scholar
  44. Lendvay JM, Sauck WA, McCormick ML, Barcelona MJ, Kampbell DH, Wilson JT, Adriaens P (1998) Geophysical characterisation, redox zonation, and contaminant distribution at a groundwater–surface water interface. Water Resour Res 34:3545–3559CrossRefGoogle Scholar
  45. Leven C, Weiss H, Vienken T, Dietrich P (2011) Direct push technologies – an efficient investigation method for subsurface characterization. Grundwasser 16(4):221–234.  https://doi.org/10.1007/s00767-011-0175-8 CrossRefGoogle Scholar
  46. Livingston RJ (2000) Eutrophication processes in coastal systems: origin and succession of plankton blooms and effects on secondary production in Gulf Coast estuaries, 6th edn. CRC Press, Boca RatonGoogle Scholar
  47. Maier U, Flegr M, Rügner H, Grathwohl P (2013) Long-term solute transport and geochemical equilibria in seepage water and groundwater in a catchment cross section. Environ Earth Sci 69(2):429–441.  https://doi.org/10.1007/s12665-013-2393-0 CrossRefGoogle Scholar
  48. Maliva RG (2016) Aquifer characterization techniques – Schlumberger methods in water resources evaluation series no.4. Springer, BaselGoogle Scholar
  49. Matott LS, Babendreier JE, Purucker ST (2009) Evaluating uncertainty in integrated environmental models: a review of concepts and tools. Water Resour Res 45:W06421.  https://doi.org/10.1029/2008WR007301 CrossRefGoogle Scholar
  50. McLachlan PJ, Chambers JE, Uhlemann SS, Binley A (2017) Geophysical characterisation of the groundwater–surface water interface. Adv Water Resour 109:302–319.  https://doi.org/10.1016/j.advwatres.2017.09.016 CrossRefGoogle Scholar
  51. Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. J Contam Hydrol 75(3–4):215–255.  https://doi.org/10.1016/j.jconhyd.2004.06.003 CrossRefGoogle Scholar
  52. Moradkhani H, Hsu K-L, Gupta H, Sorooshian S (2005) Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter. Water Resour Res 41:W05012.  https://doi.org/10.1029/2004WR003604 CrossRefGoogle Scholar
  53. Nakaya S, Uesugi K, Motodate Y, Ohmiya I, Komiya H, Masuda H, Kusakabe M (2007) Spatial separation of groundwater flow paths from a multi-flow system by a simple mixing model using stable isotopes of oxygen and hydrogen as natural tracers. Water Resour Res 43:W09404.  https://doi.org/10.1029/2006WR005059 CrossRefGoogle Scholar
  54. National Research Council (NRC) (2001) Conceptual models of flow and transport in the fractured vadose zone. National Academy Press, Washington, DC. https://www.nap.edu/download/10102. Accessed 20 Feb. 2017
  55. National Research Council (NRC) (2003) Bioavailability of contaminants in soils and sediments: processes, tools and applications. Committee on Bioavailability of Contaminants in Soils and Sediments. National Academies Press, Washington, D.CGoogle Scholar
  56. Oreskes N, Belitz K (2001) Philosophical issues in model assessment. In: Anderson MG, Bates PD (eds) Model validation: perspectives in hydrological science. John Wiley & Sons, New York, pp 23–41Google Scholar
  57. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Sci 263(5147):641–646.  https://doi.org/10.1126/science.263.5147.641 CrossRefGoogle Scholar
  58. Ortega-Calvo J-J, Harmsen J, Parsons JR, Semple KT, Aitken MD, Ajao C, Eadsforth C, Galay-Burgos M, Naidu R, Oliver R, Peijnenburg WJGM, Rombke J, Streck G, Versonnen B (2015) From bioavailability science to regulation of organic chemicals. Environ Sci Technol 49(17):10255–10264.  https://doi.org/10.1021/acs.est.5b02412 CrossRefGoogle Scholar
  59. Paasche H, Werban U, Dietrich P (2009) Near-surface seismic traveltime tomography using a direct-push source and surface-planted geophones. Geophys 74(4):G17–G25.  https://doi.org/10.1190/1.3131612 CrossRefGoogle Scholar
  60. Parsekian AD, Singha K, Minsley BJ, Holbrook WS, Slater L (2015) Multiscale geophysical imaging of the critical zone. Rev Geophys 53:1–26.  https://doi.org/10.1002/2014RG000465 CrossRefGoogle Scholar
  61. Payne FC, Quinnan JA, Potter ST (2008) Remediation hydraulics. CRC Press. Taylor & Francis Group, Boca Raton, p 432CrossRefGoogle Scholar
  62. Refsgaard JC, Hansen JR (2010) A good-looking catchment can turn into a modeller’s nightmare. Hydrol Sci J 55:899–912.  https://doi.org/10.1080/02626667.2010.505571 CrossRefGoogle Scholar
  63. Reynolds JM (2011) An introduction to applied and environmental geophysics. Wiley-Blackwell, Hoboken, NJGoogle Scholar
  64. Rolle M, Maier U, Grathwohl P (2011) Contaminant fate and reactive transport in groundwater. In: Swartjes FA (ed) Dealing with contaminated sites - from theory towards practical application. Springer, Dordrecht, pp 851–885CrossRefGoogle Scholar
  65. Schollenberger U (1998) Chemical composition and dynamics of the groundwater in the Neckar valley in the area of Tübingen (in German). PhD dissertation. Inst. of Geosci., Univ. of Tübingen, GermanyGoogle Scholar
  66. Schütze C, Vienken T, Werban U, Dietrich P, Finizola A, Leven C (2012) Joint application of geophysical methods and direct push-soil gas surveys for the improved delineation of buried fault zones. J Appl Geophys 82:129–136.  https://doi.org/10.1016/j.jappgeo.2012.03.002 CrossRefGoogle Scholar
  67. Siontorou CG, Batzias FA (2012) Managing uncertainty in environmental decision-making within ecological constraints - a model based reasoning approach. Procedia Engineering 42:1137–1149.  https://doi.org/10.1016/j.proeng.2012.07.506 CrossRefGoogle Scholar
  68. Sorell T, McEvoy K (2013) Incorporating bioavailability considerations into the evaluation of contaminated sediment sites. Remediation J 23:63–72.  https://doi.org/10.1002/rem.21338 CrossRefGoogle Scholar
  69. Tetzlaff D, McDonnell JJ, Uhlenbrook S, McGuire KJ, Bogaart PW, Naef F, Baird AJ, Dunn SM, Soulsby C (2008) Conceptualizing catchment processes: simply too complex? Hydrol Process 22:1727–1730.  https://doi.org/10.1002/hyp.7069 CrossRefGoogle Scholar
  70. Thacker BH, Doebling SW, Hemez FM, Anderson MC, Pepin JE, Rodriquez EA (2004) Concepts of model verification and validation. In: Technical Report. Los Alamos National Lad, Los Alamos, NM. https://www.osti.gov/servlets/purl/835920/. Accessed 04 Jan. 2019
  71. Thullner M, Fischer A, Richnow H-H, Wick LY (2013) Influence of mass transfer on stable isotope fractionation. Appl Microbial Biotechnol 97(2):441–452.  https://doi.org/10.1007/s00253-012-4537-7 CrossRefGoogle Scholar
  72. Torres NV, Santos G (2015) The (mathematical) modeling process in biosciences. Front Genet 6:354.  https://doi.org/10.3389/fgene.2015.00354 CrossRefGoogle Scholar
  73. Wells NS, Hakoun V, Brouyère S, Knöller K (2016) Multi-species measurements of nitrogen isotopic composition reveal the spatial constraints and biological drivers of ammonium attenuation across a highly contaminated groundwater system. Water Res 98:363–375CrossRefGoogle Scholar
  74. Zeigler BP (1976) Theory of modeling and simulation. Wiley, New YorkGoogle Scholar
  75. Ziegler CK (2006) Using mathematical models to assess sediment stability. Integr Environ Assess Manag 2:44–50.  https://doi.org/10.1002/ieam.5630020109 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ahamefula U. Utom
    • 1
    Email author
  • Ulrike Werban
    • 1
  • Carsten Leven
    • 2
  • Christin Müller
    • 3
  • Peter Dietrich
    • 1
    • 2
  1. 1.Department of Monitoring and Exploration Technologies (MET)Helmholtz Center for Environmental Research – UFZLeipzigGermany
  2. 2.Center for Applied Geoscience (ZAG)University of TübingenTübingenGermany
  3. 3.Department of Catchment HydrologyHelmholtz Center for Environmental Research – UFZHalle (Salle)Germany

Personalised recommendations