Decomposition of Cameroon’s CO2 emissions from 2007 to 2014: an extended Kaya identity

Abstract

To effectively combat global warming, an enormous reduction in CO2 emissions is required. Cameroon, which is currently the largest emitter of CO2 in the CEMAC subregion, has committed to reducing its greenhouse gas emissions by 32% by 2035. However, previous studies in Cameroon have only addressed the relationship between economic growth, energy consumption, and CO2 emissions without estimating all causal relationships at the same time. Moreover, no study has yet decomposed this country’s CO2 emissions to date. To fill these research gaps and further assess the determinants of these CO2 emissions, an extended Kaya identity and the Logarithm Mean Divisia Index (LMDI I) have been applied in this paper to identify, quantify, and explain the main drivers of Cameroon’s CO2 emissions from 2007 to 2014. Seven effects were measured and the main findings show that carbon intensity and the emission factor increased by 0.57% and 107.50% respectively. Regarding contributions to the increase of CO2 emissions, the population effect was the most positive followed by the activity effect, whereas the energy intensity, the substitution of fossil fuels and the penetration of renewable energies have contributed to reduce the CO2 emission. To enable Cameroon to not only achieve the goals of its vision but also develop a low-carbon economy, this paper provides some proposed avenues that should be considered by policymakers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. ACAT (2008) Emeutes de Fevrier 2008: Suivi des recommandations, 18. Retrieved from https://ccfd-terresolidaire.org/IMG/pdf/crisesociale2008cameroun.pdf

  2. Ang BW (2004) Decomposition analysis for policymaking in energy:: which is the preferred method? Energy Policy 32(9):1131–1139. https://doi.org/10.1016/S0301-4215(03)00076-4

    Article  Google Scholar 

  3. Ang BW (2005) The LMDI approach to decomposition analysis: a practical guide. Energy Policy 33(7):867–871. https://doi.org/10.1016/j.enpol.2003.10.010

    Article  Google Scholar 

  4. Ang BW (2015) LMDI decomposition approach: a guide for implementation. Energy Policy 86(Supplement C):233–238. https://doi.org/10.1016/j.enpol.2015.07.007

    Article  Google Scholar 

  5. Ang BW, Choi K-H (1997) Decomposition of aggregate energy and gas emission intensities for industry: a refined divisia index method. Energy J 18(3):59–73 Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030716639&partnerID=40&md5=87d0c8b5ea94280be7403a2ff3fe8a12

    Article  Google Scholar 

  6. Ang BW, Liu FL (2001) A new energy decomposition method: perfect in decomposition and consistent in aggregation. Energy 26(6):537–548. https://doi.org/10.1016/S0360-5442(01)00022-6

    Article  CAS  Google Scholar 

  7. Ang BW, Zhang FQ (2000) A survey of index decomposition analysis in energy and environmental studies. Energy 25(12):1149–1176. https://doi.org/10.1016/S0360-5442(00)00039-6

    Article  CAS  Google Scholar 

  8. Ang BW, Zhang FQ, Choi K-H (1998) Factorizing changes in energy and environmental indicators through decomposition. Energy 23(6):489–495. https://doi.org/10.1016/S0360-5442(98)00016-4

    Article  Google Scholar 

  9. Asongu S, El Montasser G, Toumi H (2016) Testing the relationships between energy consumption, CO2 emissions, and economic growth in 24 African countries: a panel ARDL approach. Environ Sci Pollut Res 23(7):6563–6573. https://doi.org/10.1007/s11356-015-5883-7

    Article  CAS  Google Scholar 

  10. Asumadu-Sarkodie S, Owusu PA (2016) Carbon dioxide emissions, GDP, energy use, and population growth: a multivariate and causality analysis for Ghana, 1971–2013. Environ Sci Pollut Res 23(13):13508–13520. https://doi.org/10.1007/s11356-016-6511-x

    Article  CAS  Google Scholar 

  11. Ben Jebli M (2016) On the causal links between health indicator, output, combustible renewables and waste consumption, rail transport, and CO2 emissions: the case of Tunisia. Environ Sci Pollut Res 23(16):16699–16715. https://doi.org/10.1007/s11356-016-6850-7

    Article  Google Scholar 

  12. Cansino JM, Sánchez-Braza A, Rodríguez-Arévalo ML (2015) Driving forces of Spain′s CO2 emissions: a LMDI decomposition approach. Renew Sust Energ Rev 48:749–759. https://doi.org/10.1016/j.rser.2015.04.011

    Article  CAS  Google Scholar 

  13. CEC (2012) Cahiers économiques du cameroun (CEC). Cameroon. Retrieved from https://blogs.worldbank.org/africacan/files/africacan/cahiers_economiques_du_cameroun_no_3_-_janvier_2012_corriger_.pdf

  14. CIA (2018) The world factbook — central intelligence agency. Central Intelligence Agency (US). Retrieved from https://www.cia.gov/library/publications/the-world-factbook/geos/pe.html. Accessed 15 Feb 2018

  15. Cogneau D, Herrera J (1995) IA DEVALUATION DU FCFA AU CAMEROUN:Bilan et perspectives, 23. Retrieved from http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_6/b_fdi_35-36/41779.pdf

  16. Cui E, Ren L, Sun H (2016) Analysis of energy-related CO2 emissions and driving factors in five major energy consumption sectors in China. Environ Sci Pollut Res 23(19):19667–19674. https://doi.org/10.1007/s11356-016-7081-7

    Article  CAS  Google Scholar 

  17. De Freitas LC, Kaneko S (2011) Decomposition of CO2 emissions change from energy consumption in Brazil: challenges and policy implications. Energy Policy 39(3):1495–1504. https://doi.org/10.1016/j.enpol.2010.12.023

    Article  CAS  Google Scholar 

  18. Dogan E, Turkekul B (2016) CO2 emissions, real output, energy consumption, trade, urbanization and financial development: testing the EKC hypothesis for the USA. Environ Sci Pollut Res 23(2):1203–1213. https://doi.org/10.1007/s11356-015-5323-8

    Article  Google Scholar 

  19. Eisentraut, A. (2010). Sustainable production of second-generation biofuels -. IEA Energy Papers, pp 1–39. https://doi.org/10.1787/9789264084247-en

  20. Engo J (2018) Decomposing the decoupling of CO2 emissions from economic growth in Cameroon. Environ Sci Pollut Res 25(35):35451–35463. https://doi.org/10.1007/s11356-018-3511-z

  21. Engo J (2019a) Decoupling of greenhouse gas emissions from economic growth in cameroon. Resources and Environmental Economics 1(1):16–28. https://doi.org/10.25082/REE.2019.01.003

  22. Engo J (2019b) Barriers related to the deployment of renewable energies in Cameroon and ways to strengthen policies. Resources and Environmental Economics 1(1):29–38. https://doi.org/10.25082/REE.2019.01.004

  23. Feng K, Davis SJ, Sun L, Hubacek K (2015) Drivers of the US CO2 emissions 1997–2013. Nat Commun 6:7714. https://doi.org/10.1038/ncomms8714

    Article  CAS  Google Scholar 

  24. Gabriel T (2012) CAMEROUN – CONTRIBUTION A LA PREPARATION DU RAPPORT NATIONAL POUR LA FORMULATION DU LIVRE BLANC REGIONAL SUR L’ACCES UNIVERSEL AUX SERVICES ENERGETIQUES INTEGRANT LE DEVELOPPEMENT DES ENERGIES RENOUVELABLES ET DE L’EFFICACITE ENERGETIQUE. Cameroon, 1–245. Retrieved from http://www.se4all.org/sites/default/files/Cameroon_RAGA_FR_Released.pdf

  25. GCA (2016) CO2 territorial emissions in 2013 (MtCO2). Global Carbon Atlas, 2013, 0–3. Retrieved from http://www.globalcarbonatlas.org/en/CO2-emissions. Accessed 24 Mar 2018

  26. Hammond GP, Norman JB (2012) Decomposition analysis of energy-related carbon emissions from UK manufacturing. Energy 41(1):220–227. https://doi.org/10.1016/j.energy.2011.06.035

    Article  CAS  Google Scholar 

  27. Hilaire N, Hervé KF (2012) TITRE : Effets de la croissance économique sur les émissions de CO 2 dans les Pays du Bassin du Congo, pp 1–17

  28. Hilaire N, Hervé KF, François K (2014) Atmospheric pollution and economic growth in Cameroon. J Int Bus Econ 2(3):171–187. https://doi.org/10.15640/jibe.v2n3a8

    Article  Google Scholar 

  29. ICCAM (2013) OPÉRATION ÉPERVIER:Les gestionnaires publics sous haute surveillance. Investir Au Cameroun (ICCAM), 13, 32. Retrieved from http://www.investiraucameroun.com/pdf/IC13.pdf

  30. IEA (2017) CO2 emissions from fuel combustion. Oecd/Iea:1–155. https://doi.org/10.1787/co2_fuel-2016-en. Accessed 21 Mar 2018

  31. IEA-CMR (2018) Cameroon International Energy Agency Balances. Retrieved from file:///D:/BIT/MY-PAPRES/P-03/P03/Introduction/Cameroon.html. Accessed 04 Feb 2018

  32. İpek Tunç G, Türüt-Aşık S, Akbostancı E (2009) A decomposition analysis of CO2 emissions from energy use: Turkish case. Energy Policy 37(11):4689–4699. https://doi.org/10.1016/j.enpol.2009.06.019

    Article  Google Scholar 

  33. Jahan S (2016) Human development report 2016 human development for everyone. United Nation Development Project, pp 1–271

  34. Jeong K, Kim S (2013) LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector. Energy Policy 62:1245–1253. https://doi.org/10.1016/j.enpol.2013.06.077

    Article  CAS  Google Scholar 

  35. Kaya Y (1990) Impact of carbon dioxide emission on GNP growth: interpretation of proposed scenarios. Paris: Presentation to the Energy and Industry Subgroup, Response Strategies Working Group, IPCC. X’Pert Stress PW3208, Software for Residual Stress Analysis, PANalytical, The Netherlands, Www.panalytical.com. https://doi.org/http://www.sciencedirect.com/science/article/pii/S0045782504000313

  36. Li W, Lu C (2015) The research on setting a unified interval of carbon price benchmark in the national carbon trading market of China. Appl Energy 155(2015):728–739. https://doi.org/10.1016/j.apenergy.2015.06.018

    Article  Google Scholar 

  37. Li W, Li H, Zhang H, Sun S (2015) The analysis of CO2 emissions and reduction potential in China’s transport sector. Math Probl Eng 1:1–12. https://doi.org/10.1155/2016/1043717

    CAS  Article  Google Scholar 

  38. Li W, Lu C, Ding Y, Zhang YW (2017a) The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China. Appl Energy 204:509–524. https://doi.org/10.1016/j.apenergy.2017.07.017

    Article  Google Scholar 

  39. Li X, Liao H, Du YF, Wang C, Wang JW, Liu Y (2017b) Carbon dioxide emissions from the electricity sector in major countries: a decomposition analysis. Environ Sci Pollut Res:1–12. https://doi.org/10.1007/s11356-017-1013-z

  40. Liu Y, Zhou Y, Wu W (2015) Assessing the impact of population, income and technology on energy consumption and industrial pollutant emissions in China. Appl Energy 155:904–917. https://doi.org/10.1016/j.apenergy.2015.06.051

    Article  CAS  Google Scholar 

  41. Mousavi B, Lopez NSA, Biona JBM, Chiu ASF, Blesl M (2017) Driving forces of Iran’s CO2 emissions from energy consumption: an LMDI decomposition approach. Appl Energy 206(August):804–814. https://doi.org/10.1016/j.apenergy.2017.08.199

    Article  Google Scholar 

  42. Moutinho V, Moreira AC, Silva PM (2015) The driving forces of change in energy-related CO<inf>2</inf> emissions in eastern, western, northern and southern Europe: the LMDI approach to decomposition analysis. Renew Sust Energ Rev 50:1485–1499. https://doi.org/10.1016/j.rser.2015.05.072

    Article  CAS  Google Scholar 

  43. Noubissi Domguia E, Njangang H (2017) Croissance économique et dégradation de l’environnement au Cameroun: Croissance économique et dégradation de l’environnement. Afr Dev Rev 29:615–629. https://doi.org/10.1111/1467-8268.12300

    Article  Google Scholar 

  44. O’Mahony T (2013) Decomposition of Ireland’s carbon emissions from 1990 to 2010: an extended Kaya identity. Energy Policy 59:573–581. https://doi.org/10.1016/j.enpol.2013.04.013

    Article  Google Scholar 

  45. Obadi SM, Korček M (2016) Drivers of CO2 emissions in the Slovak economy: the logarithmic mean Divisia index approach of decomposition. Ekonomicky Casopis 64(4):331–352

    Google Scholar 

  46. OECD-AfDB (2001) African economic outlook. OECD-AfDB, pp 71–82. Retrieved from https://www.oecd.org/countries/cameroon/1823923.pdf

  47. Paramati SR, Sinha A, Dogan E (2017) The significance of renewable energy use for economic output and environmental protection: evidence from the Next 11 developing economies. Environ Sci Pollut Res 24(15):13546–13560. https://doi.org/10.1007/s11356-017-8985-6

    Article  CAS  Google Scholar 

  48. Peters GP, Andrew RM, Canadell JG, Fuss S, Jackson RB, Korsbakken JI, le Quéré C, Nakicenovic N (2017) Key indicators to track current progress and future ambition of the Paris Agreement. Nat Clim Chang 7(2):118–122. https://doi.org/10.1038/nclimate3202

    Article  Google Scholar 

  49. Review C (2017) 2017 country review. Retrieved from http://www.countrywatch.com/Content/pdfs/reviews/B35Z5356.01c.pdf

  50. Roinioti A, Koroneos C (2017) The decomposition of CO2emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth. Renew Sust Energ Rev 76(March):448–459. https://doi.org/10.1016/j.rser.2017.03.026

    Article  Google Scholar 

  51. Román-Collado R, Morales-Carrión AV (2018) Towards a sustainable growth in Latin America: a multiregional spatial decomposition analysis of the driving forces behind CO 2 emissions changes. Energy Policy 115(January):273–280. https://doi.org/10.1016/j.enpol.2018.01.019

    Article  Google Scholar 

  52. Shuai C, Shen L, Jiao L, Wu Y, Tan Y (2017) Identifying key impact factors on carbon emission: evidences from panel and time-series data of 125 countries from 1990 to 2011. Appl Energy 187:310–325. https://doi.org/10.1016/j.apenergy.2016.11.029

    Article  CAS  Google Scholar 

  53. Sumabat AK, Lopez NS, Yu KD, Hao H, Li R, Geng Y, Chiu ASF (2016) Decomposition analysis of Philippine CO 2 emissions from fuel combustion and electricity generation. Appl Energy 164:795–804. https://doi.org/10.1016/j.apenergy.2015.12.023

    Article  CAS  Google Scholar 

  54. Sun C, Ding D, Yang M (2017) Estimating the complete CO2emissions and the carbon intensity in India: from the carbon transfer perspective. Energy Policy 109(March):418–427. https://doi.org/10.1016/j.enpol.2017.07.022

    Article  CAS  Google Scholar 

  55. Transparency International (2016) Transparency international corruption perceptions index 2016. Transparency International Corruption Perceptions Index 2016, 9. Retrieved from http://www.transparency.org/news/feature/corruption_perceptions_index_2016. Accessed 24 Dec 2017

  56. UNEP (2016) Cameroon: consumption, energy resources, energy, (Table 1), 2013–2016. Retrieved from https://wedocs.unep.org/bitstream/handle/20.500.11822/20487/Energy_profile_Cameroon.pdf?sequence=1&isAllowed=y. Accessed 20 Nov 2017

  57. Wang M, Feng C (2017) Decomposition of energy-related CO2 emissions in China: an empirical analysis based on provincial panel data of three sectors. Appl Energy 190(Supplement C):772–787. https://doi.org/10.1016/j.apenergy.2017.01.007

    Article  Google Scholar 

  58. WDI (2018) World development indicators | DataBank. The World Bank. Retrieved from http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators#advancedDownloadOptions. Accessed 4 Mar 2018

  59. Wesseh PK, Lin B (2016) Modeling environmental policy with and without abatement substitution: a tradeoff between economics and environment? Appl Energy 167:34–43. https://doi.org/10.1016/j.apenergy.2016.01.031

    Article  Google Scholar 

  60. World Bank (2014) Cameroon Economic Update, (7). Retrieved from http://www.worldbank.org/content/dam/Worldbank/document/Africa/Cameroon/Report/cameroon-economic-update-vol7.pdf

  61. Xie R, Fang J, Liu C (2017) The effects of transportation infrastructure on urban carbon emissions. Appl Energy 196(Supplement C):199–207. https://doi.org/10.1016/j.apenergy.2017.01.020

    Article  Google Scholar 

  62. Xu L, Chen N, Chen Z (2017) Will China make a difference in its carbon intensity reduction targets by 2020 and 2030? Appl Energy 203:874–882. https://doi.org/10.1016/j.apenergy.2017.06.087

    Article  Google Scholar 

  63. Zerbo E (2017) Income-environment relationship in sub-Saharan African countries: further evidence with trade openness. Environ Sci Pollut Res 24(19):16488–16502. https://doi.org/10.1007/s11356-017-9303-z

    Article  Google Scholar 

  64. Zhang X, Qi T y, Ou X m, Zhang X l (2017) The role of multi-region integrated emissions trading scheme: a computable general equilibrium analysis. Appl Energy 185(July 2012):1860–1868. https://doi.org/10.1016/j.apenergy.2015.11.092

    Article  Google Scholar 

  65. Zhou Y, Liu Y (2016) Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China. Appl Energy 180:800–809. https://doi.org/10.1016/j.apenergy.2016.08.035

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to dedicate this work to his family and more particularly to Mr Engo Ndongo Jean, Mrs Medjo Mba Agnes, Mr Atem Engo Léon, and Mr Eyenga Engo Lucien for their indescribable support. We would like to thank, the supervisor of this study, Professor. Dr. Yi-Ming Wei, to BIT – CEEP in China, and all those who are in charge of the scientific evaluation of this work, and more particularly the editors and reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean Engo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Appendix

Appendix

Table 3 Cameroon’s CO2 emission annual time series decomposition results from 2007 to 2014, based on Kaya identities
Table 4 Cameroon’s CO2 emission annual time series decomposition results from 2007 to 2014, based on Kaya identity in percentage
Table 5 Cameroon’s CO2 emission annual time series decomposition results from 2007 to 2014, based on an extended Kaya identity
Table 6 Cameroon’s CO2 emission annual time series decomposition results from 2007 to 2014, according to Kaya identities extension in percentage

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Engo, J. Decomposition of Cameroon’s CO2 emissions from 2007 to 2014: an extended Kaya identity. Environ Sci Pollut Res 26, 16695–16707 (2019). https://doi.org/10.1007/s11356-019-05042-z

Download citation

Keywords

  • Cameroon
  • Energy intensity
  • GDP per capita
  • Population
  • CO2 emission
  • LMDI
  • Kaya identity