Environmental remediation processes by zero valence copper: reaction mechanisms

Abstract

Recent studies have shown Cu(0) as a promising material for the removal of organic and inorganic pollutants. However, there is no review addressing the studies performed. This fact may be related to the toxicity of the particles and the copper released in solution that has not motivated researchers, which entails in a reduced number of publications. However, studies point out how to solve the problem of Cu deposition in support materials. In this work, a detailed review of Cu(0) applications was performed. The specific focus was the reaction mechanisms related to adsorption, oxidation, and reduction processes. Initially, the resources that allow the understanding of the reaction mechanism, such as characterization techniques and the experimental conditions for investigation of the species involved in the process, were presented. The studies were evaluated separately, showing the mechanisms involved only with the application of Cu(0) in pure and isolated form and in association with oxidizing or reductive agents, combined with irradiation sources and ultrasonic waves and in the form supported in polymer matrices. It was verified that by the proposed reaction mechanisms, the exclusive participation of Cu(0), being the removal process, explained only by the redox behavior of copper. Therefore, the review showed the need for future research regarding the redox behavior of the contaminants.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Bader H, Sturzenegger V, Hoigné J (1988) Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N, N-diethyl-p-phenylenediamine (DPD). Water Res 22:1109–1115. https://doi.org/10.2116/analsci.14.889

    CAS  Article  Google Scholar 

  2. Baskan SK, Tütem E, Akyüz E, Özen S, Apak R (2016) Spectrophotometric total reducing sugars assay based on cupric reduction. Talanta 147:162–168. https://doi.org/10.1016/j.talanta.2015.09.049

    CAS  Article  Google Scholar 

  3. Belay TA, Lin FM, Lin CY, Hsiao HM, Chang MF, Liu JC (2015) Reduction of concentrated nitrate by using in situ synthesized zero-valent copper. Water Res Technol 72:960–965. https://doi.org/10.2166/wst.2015.287

    CAS  Article  Google Scholar 

  4. Belay TA, Lin CY, Hsiao HM, Chang MF, Liu JC (2018) Effect of precursor type on reduction of concentrated nitrate using zero-valent copper and sodium borohydride. Water Res Technol 77:114–122. https://doi.org/10.2166/wst.2017.525

    CAS  Article  Google Scholar 

  5. Beverskog B, Puigdomenech I (1997) Revised Pourbaix diagrams for copper at 25 to 300 °C. J Electrochem Soc 144:3476–3483

    CAS  Article  Google Scholar 

  6. Biesinger MC, Lau LWM, Gerson AR, St R, Smart C (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898. https://doi.org/10.1016/j.apsusc.2010.07.086

    CAS  Article  Google Scholar 

  7. Boczkaj G, Fernandes A (2017) Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chem Eng J 320:608–633. https://doi.org/10.1016/j.cej.2017.03.084

    CAS  Article  Google Scholar 

  8. Bokare AD, Choi W (2009) Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ Sci Technol 43:7130–7135

    CAS  Article  Google Scholar 

  9. Bokare AD, Choi W (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater 275:121–135. https://doi.org/10.1016/j.jhazmat.2014.04.054

    CAS  Article  Google Scholar 

  10. Borkow G, Gabbay J (2009) Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr Chem Biol 3:272–278

    CAS  Google Scholar 

  11. Bremner DH, Burgess AE, Houllemare D, Namkung KC (2006) Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide. Appl Catal B Environ 63:15–19. https://doi.org/10.1016/j.apcatb.2005.09.005

    CAS  Article  Google Scholar 

  12. Cai M, Su J, Zhu Y, Wei X, Jin M, Zhang H, Dong C, Wei Z (2016) Decolorization of azo dyes Orange G using hydrodynamic cavitation coupled with heterogeneous Fenton process. Ultrason Sonochem 28:302–310. https://doi.org/10.1016/j.ultsonch.2015.08.001

    CAS  Article  Google Scholar 

  13. Chand R, Ince NH, Gogate PR, Bremner DH (2009) Phenol degradation using 20, 300 and 520 kHz ultrasonic reactors with hydrogen peroxide, ozone and zero valent metals. Sep Purif Technol 67:103–109. https://doi.org/10.1016/j.seppur.2009.03.035

    CAS  Article  Google Scholar 

  14. Chang S, Wang K, Chao S, Peng T, Huang L (2009) Degradation of azo and anthraquinone dyes by a low-cost Fe0/air process. J Hazard Mater 166:1127–1133. https://doi.org/10.1016/j.jhazmat.2008.12.021

    CAS  Article  Google Scholar 

  15. Cotton AF, Wilkinson G (1988) Advanced inorganic chemistry. https://doi.org/10.1016/j.jaap.2011.11.019

  16. Dai Y, Li F, Ge F, Zhu F, Wu L, Yang X (2006) Mechanism of the enhanced degradation of pentachlorophenol by ultrasound in the presence of elemental iron. J Hazard Mater 137:1424–1429. https://doi.org/10.1016/j.jhazmat.2006.04.025

    CAS  Article  Google Scholar 

  17. Dang TMT, Le TTT, Fribourg-blanc E, Dang MC (2011) Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv Nat Sci Nanosci Nanotechnol 2:015009. https://doi.org/10.1088/2043-6262/2/1/015009

    CAS  Article  Google Scholar 

  18. Davies MJ (2016) Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods. Methods 109:21–30. https://doi.org/10.1016/j.ymeth.2016.05.013

    CAS  Article  Google Scholar 

  19. de Godoi FC, Rodriguez-castellon E, Guibal E, Beppu MM (2013) An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chem Eng J 234:423–429. https://doi.org/10.1016/j.cej.2013.09.006

    CAS  Article  Google Scholar 

  20. de Godoi FC, Rabelo RB, da Silva MA, Rodríguez-Castellón E, Guibal E, Beppu MM (2014) Introduction of copper nanoparticles in chitosan matrix as strategy to enhance chromate adsorption. Chem Eng Process Process Intensif 83:43–48. https://doi.org/10.1016/j.cep.2014.07.002

    CAS  Article  Google Scholar 

  21. de Sousa PVF, de Oliveira AF, da Silva AA, Vaz BG, Lopes RP (2018) Study of ciprofloxacin degradation by zero-valent copper nanoparticles. Chem Pap. https://doi.org/10.1007/s11696-018-0575-7.

  22. Deng Y, Zhao R (2015) Advanced oxidation processes (AOPs) in wastewater treatment. Curr Pollut Rep 1:167–176. https://doi.org/10.1007/s40726-015-0015-z

    CAS  Article  Google Scholar 

  23. Dong G, Ai Z, Zhang L (2014) ScienceDirect Total aerobic destruction of azo contaminants with nanoscale zero-valent copper at neutral pH: promotion effect of in-situ generated carbon center radicals. 6. https://doi.org/10.1016/j.watres.2014.08.011

  24. Du X, Zhang Y, Hussain I, Huang S, Huang W (2017) Insight into reactive oxygen species in persulfate activation with copper oxide: activated persulfate and trace radicals. Chem Eng J 313:1023–1032. https://doi.org/10.1016/j.cej.2016.10.138

    CAS  Article  Google Scholar 

  25. Duan J, Zhu H, Xu F, Zhao J (2016) A new approach to 4-chlorophenol dechlorination on monometallic copper compared to its Cu/Fe bimetallic system. Chem Eng J 304:282–288. https://doi.org/10.1016/j.cej.2016.06.089

    CAS  Article  Google Scholar 

  26. ElShafei GMS, Yehia FZ, Eshaq G, ElMetwally AE (2017) Enhanced degradation of nonylphenol at neutral pH by ultrasonic assisted- heterogeneous Fenton using nano zero valent metals. Sep Purif Technol 178:122–129. https://doi.org/10.1016/j.seppur.2017.01.028

    CAS  Article  Google Scholar 

  27. Fang GD, Zhou DM, Dionysiou DD (2013) Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: demonstration in the degradation of 2-chlorobiphenyl. J Hazard Mater 250–251:68–75. https://doi.org/10.1016/j.jhazmat.2013.01.054

    CAS  Article  Google Scholar 

  28. Feng Y, Wu D, Liao C, Deng Y, Zhang T, Shih K (2016) Red mud powders as low-cost and efficient catalysts for persulfate activation: pathways and reusability of mineralizing sulfadiazine. Sep Purif Technol 167:136–145. https://doi.org/10.1016/j.seppur.2016.04.051

    CAS  Article  Google Scholar 

  29. Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205. https://doi.org/10.1016/j.jhazmat.2013.12.062

    CAS  Article  Google Scholar 

  30. Gambino J, Robbins J, Rutkowski T, Johnson C, Devries K, Rath D et al. (2008) Etching of copper in deionized water rinse. 15th Int. Symp. Phys. Fail. Anal. Integr. Circuits, IEEE; pp 1–4

  31. Ghanbari F, Moradi M, Manshouri M (2014) Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: compared with zero valent copper. J Environ Chem Eng 2:1846–1851. https://doi.org/10.1016/j.jece.2014.08.003

    CAS  Article  Google Scholar 

  32. Ghauch A, Ayoub G, Naim S (2013) Degradation of sulfamethoxazole by persulfate assisted micrometric Fe0 in aqueous solution. Chem Eng J 228:1168–1181. https://doi.org/10.1016/j.cej.2013.05.045

    CAS  Article  Google Scholar 

  33. Ghodselahi T, Vesaghi MA, Shafiekhani A, Baghizadeh A, Lameii M (2008) XPS study of the Cu@Cu2O core-shell nanoparticles. Appl Surf Sci 255:2730–2734. https://doi.org/10.1016/j.apsusc.2008.08.110

    CAS  Article  Google Scholar 

  34. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    CAS  Article  Google Scholar 

  35. Gogate PR, Bhosale GS (2013) Comparison of effectiveness of acoustic and hydrodynamic cavitation in combined treatment schemes for degradation of dye wastewaters. Chem Eng Process Process Intensif 71:59–69. https://doi.org/10.1016/j.cep.2013.03.001

    CAS  Article  Google Scholar 

  36. Guo B, Liua G, Zeng Y, Dong G, Wang C (2018) Rapid mineralization of methyl orange by nanocrystalline-assembled mesoporous Cu2O microspheres. Nanotechonoly 29:445701

    Article  Google Scholar 

  37. Hawkins CL, Davies MJ (1840) Detection and characterisation of radicals in biological materials using EPR methodology. Biochim Biophys Acta 2014:708–721. https://doi.org/10.1016/j.bbagen.2013.03.034

    CAS  Article  Google Scholar 

  38. He W, Liu Y, Wamer WG, Yin J (2014) Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. J Food Drug Anal 22:49–63. https://doi.org/10.1016/j.jfda.2014.01.004

    CAS  Article  Google Scholar 

  39. Hong R, Guo Z, Gao J, Gu C (2017) Rapid degradation of atrazine by hydroxyl radical induced from montmorillonite templated subnano-sized zero-valent copper. Chemosphere 180:335–342. https://doi.org/10.1016/j.chemosphere.2017.04.025

    CAS  Article  Google Scholar 

  40. Hou L, Wang L, Royer S, Zhang H (2016) Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. J Hazard Mater 302:458–467. https://doi.org/10.1016/j.jhazmat.2015.09.033

    CAS  Article  Google Scholar 

  41. Hu J, Zhang J, Yuan L, Lin S (2017) Activation of oxygen via accelerating the copper-redox cycle by UV irradiation. J Water Supply Res Technol AQUA 66:574–585. https://doi.org/10.2166/aqua.2017.052

    Article  Google Scholar 

  42. Huang C-C, Lo S-L, Tsaib S-M, Lien H-L (2011) Catalytic hydrodechlorination of 1,2-dichloroethane using copper nanoparticles under reduction conditions of sodium borohydride. J Environ Monit 13:2406–2412. https://doi.org/10.1039/c1em10370a

    CAS  Article  Google Scholar 

  43. Huang C-C, Lo S-L, Lien H-L (2012) Zero-valent copper nanoparticles for effective dechlorination of dichloromethane using sodium borohydride as a reductant. Chem Eng J 203:95–100. https://doi.org/10.1016/j.cej.2012.07.002

    CAS  Article  Google Scholar 

  44. Huang C-C, Lo S-L, Lien H-L (2013) Synergistic effect of zero-valent copper nanoparticles on dichloromethane degradation by vitamin B12 under reducing condition. Chem Eng J 219:311–318. https://doi.org/10.1016/j.cej.2013.01.016

    CAS  Article  Google Scholar 

  45. Ighodaro OM, Akinloye OA (2017) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54:1–7. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  46. Ince NH (2018) Ultrasound-assisted advanced oxidation processes for water decontamination. Ultrason Sonochem 40:97–103. https://doi.org/10.1016/j.ultsonch.2017.04.009

    CAS  Article  Google Scholar 

  47. Kamal T, Bahadar S, Asiri AM (2016) Synthesis of zero-valent Cu nanoparticles in the chitosan coating layer on cellulose microfibers: evaluation of azo dyes catalytic reduction. Cellulose 23:1911–1923. https://doi.org/10.1007/s10570-016-0919-9

    CAS  Article  Google Scholar 

  48. Keller AA, Adeleye AS, Conway JR, Garner KL, Zhao L, Cherr GN, Hong J, Gardea-Torresdey JL, Godwin HA, Hanna S, Ji Z, Kaweeteerawat C, Lin S, Lenihan HS, Miller RJ, Nel AE, Peralta-Videa JR, Walker SL, Taylor AA, Torres-Duarte C, Zink JI, Zuverza-Mena N (2017) Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact 7:28–40. https://doi.org/10.1016/j.impact.2017.05.003

    Article  Google Scholar 

  49. Khalaj M, Kamali M, Khodaparast Z, Jahanshahi A (2018) Ecotoxicology and environmental safety copper-based nanomaterials for environmental decontamination—an overview on technical and toxicological aspects. Ecotoxicol Environ Saf 148:813–824. https://doi.org/10.1016/j.ecoenv.2017.11.060

    CAS  Article  Google Scholar 

  50. Kim JK, Metcalfe IS (2007) Investigation of the generation of hydroxyl radicals and their oxidative role in the presence of heterogeneous copper catalysts. Chemosphere 69:689–696. https://doi.org/10.1016/j.chemosphere.2007.05.041

    CAS  Article  Google Scholar 

  51. Kobayashi Y, Shirochi T, Yasuda Y, Morita T (2013) Preparation of metallic copper nanoparticles by reduction of copper ions in aqueous solution and their metal-metal bonding properties. Int J Chem Mol Nucl Mater Metall Eng 7:769–772

    Google Scholar 

  52. Lai B, Chen Z, Zhou Y, Yang P, Wang J, Chen Z (2013) Removal of high concentration p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US–ZVI). J Hazard Mater 250–251:220–228. https://doi.org/10.1016/j.jhazmat.2013.02.002

    CAS  Article  Google Scholar 

  53. Lai B, Zhang Y, Yuan Y, Chen Z, Yang P (2014) Influence of preparation conditions on characteristics, reactivity, and operational life of microsized Fe/Cu bimetallic particles. Ind Eng Chem Res 53:12295–12304. https://doi.org/10.1021/ie501756m

    CAS  Article  Google Scholar 

  54. Lee C-L, Jou C-JG, Wang PH (2005) Enhanced degradation of chlorobenzene in aqueous solution using microwave-induced zero-valent iron and copper particles. Water Environ Res 82:642–648. https://doi.org/10.2175/106143009X12529484816033

    CAS  Article  Google Scholar 

  55. Lee G, Vincenza M, Coichev N, Dorigan H (2011) The reduction of Cu (II)/neocuproine complexes by some polyphenols: total polyphenols determination in wine samples. Food Chem 126:679–686. https://doi.org/10.1016/j.foodchem.2010.11.020

    CAS  Article  Google Scholar 

  56. Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles—a study with high resolution x-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946. https://doi.org/10.1021/jp0702189

    CAS  Article  Google Scholar 

  57. Li Y, Lousada CM, Soroka IL, Korzhavyi PA (2015a) Bond network topology and antiferroelectric order in cuprice CuOH. Inorg Chem 54:8969–8977. https://doi.org/10.1021/acs.inorgchem.5b01030

    CAS  Article  Google Scholar 

  58. Li P, Song Y, Wang S, Tao Z, Yu S, Liu Y (2015b) Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation. Ultrason Sonochem 22:132–138. https://doi.org/10.1016/j.ultsonch.2014.05.025

    CAS  Article  Google Scholar 

  59. Li C, Du Z, Zou W, Li H, Zhang C (2015c) Fabrication of copper coated polymer foam and their application for hexavalent chromium removal. React Funct Polym 88:24–30. https://doi.org/10.1016/j.reactfunctpolym.2015.02.001

    CAS  Article  Google Scholar 

  60. Li Z, Lyu J, Ge M (2018) Synthesis of magnetic Cu/CuFe2O4 nanocomposite as a highly efficient Fenton-like catalyst for methylene blue degradation. J Mater Sci 53:15081–15095. https://doi.org/10.1007/s10853-018-2699-0

    CAS  Article  Google Scholar 

  61. Liang C, Su HW (2009) Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind Eng Chem Res 48:5558–5562. https://doi.org/10.1021/ie9002848

    CAS  Article  Google Scholar 

  62. Lide DR (2009) Standard thermodynamic properties of chemical substances. CRC handbook of Chemistry and Physics. 90th ed. Flórida

  63. Lin CJ, Lo S, Liou YH (2005) Degradation of aqueous carbon tetrachloride by nanoscale zerovalent copper on a cation resin. Chemosphere 59:1299–1307. https://doi.org/10.1016/j.chemosphere.2004.11.064

    CAS  Article  Google Scholar 

  64. Liou YH, Lo SL, Lin CJ (2007) Size effect in reactivity of copper nanoparticles to carbon tetrachloride degradation. Water Res 41:1705–1712. https://doi.org/10.1016/j.watres.2007.01.014

    CAS  Article  Google Scholar 

  65. Liú D, Wang G, Liu D, Lin J, He Y, Li X et al (2016) Photocatalysis using zero-valent nano-copper for degrading methyl orange under visible light irradiation. Opt Mater (Amst) 53:155–159. https://doi.org/10.1016/j.optmat.2016.01.047

    CAS  Article  Google Scholar 

  66. Liu C, Zhang J, Wang Q, Zhang W, Zhou P, Hu S, Zhang G (2018) Enhancement of ultrasound on oxidation of AO7 by nZVC peroxomonosulfate combined system. J Water Supply Res Technol AQUA 67:472–483. https://doi.org/10.2166/aqua.2018.015

    Article  Google Scholar 

  67. Luo Y, Guo W, Hao H, Duc L, Ibney F, Zhang J et al (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065

    CAS  Article  Google Scholar 

  68. Luo L, Wu D, Dai D, Yang Z, Chen L, Liu Q, He J, Yao Y (2017) Synergistic effects of persistent free radicals and visible radiation on peroxymonosulfate activation by ferric citrate for the decomposition of organic contaminants. Appl Catal B Environ 205:404–411. https://doi.org/10.1016/j.apcatb.2016.12.060

    CAS  Article  Google Scholar 

  69. Ma J, He D, Collins RN, He C, Waite TD (2016) The tortoise versus the hare—possible advantages of microparticulate zerovalent iron (mZVI) over nanoparticulate zerovalent iron (nZVI) in aerobic degradation of contaminants. Water Res 105:331–340. https://doi.org/10.1016/j.watres.2016.09.012

    CAS  Article  Google Scholar 

  70. Ma X, Cheng Y, Ge Y, Wu H, Li Q, Gao N (2018) Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. Ultrason Sonochem 40:763–772. https://doi.org/10.1016/j.ultsonch.2017.08.025

    CAS  Article  Google Scholar 

  71. Marcelo CR, Puiatti GA, Nascimento MA, Oliveira AF, Lopes RP (2018) Degradation of the reactive blue 4 dye in aqueous solution using zero-valent copper nanoparticles. J Nanomater 2018:1–10. https://doi.org/10.1155/2018/4642038

    CAS  Article  Google Scholar 

  72. Massey AG, Thompson NR, Johnson BFG (2017) The chemistry of copper, silver and gold: pergamon texts in inorganic chemistry. vol. 17. Elsevier. https://doi.org/10.1016/B978-0-08-018860-7.50006-2

  73. Matzek LW, Carter KE (2016) Activated persulfate for organic chemical degradation: a review. Chemosphere 151:178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055

    CAS  Article  Google Scholar 

  74. Mekewi MA, Darwish AS, Amin MS, Eshaq G, Bourazan HA (2016) Copper nanoparticles supported onto montmorillonite clays as efficient catalyst for methylene blue dye degradation. Egypt J Pet 25:269–279. https://doi.org/10.1016/j.ejpe.2015.06.011

    Article  Google Scholar 

  75. Neta P, Madhavan V, Zemel H, Fessenden RW (1977) Rate constants and mechanism of reaction of SO4.-with aromatic compounds. J Am Chem Soc 99:163–164

    CAS  Article  Google Scholar 

  76. Nidheesh P V., Khatri J, Anantha Singh TS, Gandhimathi R, Ramesh ST (2018) Review of zero-valent aluminium based water and wastewater treatment methods. vol. 200. Elsevier B.V. https://doi.org/10.1016/j.chemosphere.2018.02.155

  77. Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5:27986–28006. https://doi.org/10.1039/c4ra13315c

    CAS  Article  Google Scholar 

  78. Nuyken O, Dyckerhoff L, Schuster H, Kerber R (1983) Radical efficiency and ionic reactions of some unsymmetrical azo compounds. Die Makromol Chemie Macromol Chem Phys 184:2251–2259

    CAS  Article  Google Scholar 

  79. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122. https://doi.org/10.1016/j.advwatres.2012.02.005

    CAS  Article  Google Scholar 

  80. Ohno S, Teshima N, Zhang H, Sakai T (2003) Utilization of activating and masking effects by ligands for highly selective catalytic spectrophotometric determination of copper and iron in natural waters. Talanta 60:1177–1185. https://doi.org/10.1016/S0039-9140(03)00222-4

    CAS  Article  Google Scholar 

  81. Oliveira LMF, Nascimento MA, Guimarães YM, Oliveira AF, Silva AA, Lopes RP (2018) Removal of beta-lactams antibiotics through zero-valent copper nanoparticles. J Braz Chem Soc 29:1630–1637. https://doi.org/10.21577/0103-5053.20180034

    CAS  Article  Google Scholar 

  82. Ourique MF, Viana P, De Sousa F, De Oliveira AF, Lopes RP (2018) Comparative study of the direct black removal by Fe, Cu, and Fe/Cu nanoparticles

  83. Palominos R, Freer J, Mondaca MA, Mansilla HD (2008) Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine. J Photochem Photobiol A Chem 193:139–145. https://doi.org/10.1016/j.jphotochem.2007.06.017

    CAS  Article  Google Scholar 

  84. Park J, Jung Y, Cho J, Choi W (2006) Chemical reaction of sputtered Cu film with PI modified by low energy reactive atomic beam. Appl Surf Sci 252:5877–5891. https://doi.org/10.1016/j.apsusc.2005.08.019

    CAS  Article  Google Scholar 

  85. Pham AN, Xing G, Miller CJ, Waite TD (2013) Fenton-like copper redox chemistry revisited: hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J Catal 301:54–64. https://doi.org/10.1016/j.jcat.2013.01.025

    CAS  Article  Google Scholar 

  86. Pignatello JJ, Oliveros E, Mackay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Environ Sci Technol 36:1–84. https://doi.org/10.1080/10643380500326564

    CAS  Article  Google Scholar 

  87. Qi C, Liu X, Ma J, Lin C, Li X, Zhang H (2016) Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants. Chemosphere 151:280–288. https://doi.org/10.1016/j.chemosphere.2016.02.089

    CAS  Article  Google Scholar 

  88. Raut SS, Kamble SP, Kulkarni PS (2016) Efficacy of zero-valent copper (Cu0) nanoparticles and reducing agents for dechlorination of mono chloroaromatics. Chemosphere 159:359–366. https://doi.org/10.1016/j.chemosphere.2016.06.031

    CAS  Article  Google Scholar 

  89. Rhodes CJ, Actions FE, Kingdom U (2016) Electron spin resonance spectroscopy: principles and instrumentation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-409547-2.12793-3

  90. Schilt AA (2013) Analytical applications of 1, 10-phenanthroline and related compounds: international series of monographs in analytical chemistry. Elsevier

  91. Shen Y, Zhang Z, Xiao K (2015) Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants. RSC Adv 5:91846–91854. https://doi.org/10.1039/c5ra18923c

    CAS  Article  Google Scholar 

  92. Shen W, Mu Y, Wang B, Ai Z, Zhang L (2017a) Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles. Appl Surf Sci 393:316–324. https://doi.org/10.1016/j.apsusc.2016.10.020

    CAS  Article  Google Scholar 

  93. Shen W, Lin F, Jiang X, Li H, Ai Z, Zhang L (2017b) Efficient removal of bromate with core-shell Fe@Fe2O3nanowires. Chem Eng J 308:880–888. https://doi.org/10.1016/j.cej.2016.09.070

    CAS  Article  Google Scholar 

  94. Sun X, Kurokawa T, Suzuki M, Takagi M, Kawase Y (2015) Removal of cationic dye methylene blue by zero-valent iron: effects of pH and dissolved oxygen on removal mechanisms. J Environ Sci Health A 50:1057–1071. https://doi.org/10.1080/10934529.2015.1038181

    CAS  Article  Google Scholar 

  95. Sun L, Song H, Li Q, Li A (2016) Fe/Cu bimetallic catalysis for reductive degradation of nitrobenzene under oxic conditions. Chem Eng J 283:366–374. https://doi.org/10.1016/j.cej.2015.06.065

    CAS  Article  Google Scholar 

  96. Tutem E, Apak R (1991) Spectrophotometric determination of trace amounts of copper (I) and reducing agents with neocuproine in the presence of copper (II). Analyst 116:89–94

    CAS  Article  Google Scholar 

  97. Umer A, Naveed S, Ramzan N, Rafique MS (2012) Selection of a suitable method for the synthesis of copper nanoparticles. Nano 7:1230005. https://doi.org/10.1142/S1793292012300058

    CAS  Article  Google Scholar 

  98. Umer A, Naveed S, Ramzan N, Rafique MS, Imran M (2014) A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Rev Matéria 19:197–203

    Google Scholar 

  99. Vanýsek P (2012) CRC handbook of chemistry and physics, “Electrochemical series.” vol. 93. 92nd ed

  100. Villamena FA, Zweier JL (2004) Detection of reactive oxygen and nitrogen species. Antioxidants Redox Signal 6:619–629

    CAS  Article  Google Scholar 

  101. Wang K, Lin C, Wei M, Liang H, Li H, Chang C et al (2010) Effects of dissolved oxygen on dye removal by zero-valent iron. J Hazard Mater 182:886–895. https://doi.org/10.1016/j.jhazmat.2010.07.002

    CAS  Article  Google Scholar 

  102. Wang Q, Shao Y, Gao N, Chu W, Deng J, Shen X, Lu X, Zhu Y, Wei X (2016) Degradation of alachlor with zero-valent iron activating persulfate oxidation. J Taiwan Inst Chem Eng 63:379–385. https://doi.org/10.1016/j.jtice.2016.03.038

    CAS  Article  Google Scholar 

  103. Wang Q, Zhang Y, Wang H, Ma L (2018) A pathway of free radical generation via copper corrosion and its application to oxygen and ozone activation for the oxidative destruction of organic pollutants. Res Chem Intermed 2:1–20

    Google Scholar 

  104. Wen G, Wang S, Ma J, Huang T, Liu Z (2014) Oxidative degradation of organic pollutants in aqueous solution using zero valent copper under aerobic atmosphere condition. J Hazard Mater 275:193–199. https://doi.org/10.1016/j.jhazmat.2014.05.002

    CAS  Article  Google Scholar 

  105. Wu S, Liou T, Mi F (2009) Bioresource technology synthesis of zero-valent copper-chitosan nanocomposites and their application for treatment of hexavalent chromium. Bioresour Technol 100:4348–4353. https://doi.org/10.1016/j.biortech.2009.04.013

    CAS  Article  Google Scholar 

  106. Xu X, Li S, Hao Q, Liu J, Yu Y, Li H (2012) Activation of persulfate and its environmental application. Int J Environ Bioenergy 1:60–81

    Google Scholar 

  107. Yamaguchi R, Kurosu S, Suzuki M, Kawase Y (2018) Hydroxyl radical generation by zero-valent iron/Cu (ZVI/Cu) bimetallic catalyst in wastewater treatment: heterogeneous Fenton/Fenton-like reactions by Fenton reagents formed in-situ under oxic conditions. Chem Eng J 334:1537–1549. https://doi.org/10.1016/j.cej.2017.10.154

    CAS  Article  Google Scholar 

  108. Yang Z, Dai D, Yao Y, Chen L, Liu Q, Luo L (2017) Extremely enhanced generation of reactive oxygen species for oxidation of pollutants from peroxymonosulfate induced by a supported copper oxide catalyst. Chem Eng J 322:546–555. https://doi.org/10.1016/j.cej.2017.04.018

    CAS  Article  Google Scholar 

  109. Yehia FZ, Eshaq G, Rabie AM, Mady AH, ElMetwally AE (2016) Sonocatalytic degradation of phenol catalyzed by nano-sized zero valent Cu and Ni. Desalin Water Treat 57:2104–2112. https://doi.org/10.1080/19443994.2014.982197

    CAS  Article  Google Scholar 

  110. Yong ST, Ooi CW, Chai SP, Wu XS (2013) Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes. Int J Hidrogen Energy 38:9541–9552. https://doi.org/10.1016/j.ijhydene.2013.03.023

    CAS  Article  Google Scholar 

  111. Zhang Y, Fan J, Yang B, Huang W, Ma L (2017a) Copper-catalyzed activation of molecular oxygen for oxidative destruction of acetaminophen: the mechanism and superoxide-mediated cycling of copper species. Chemosphere 166:89–95. https://doi.org/10.1016/j.chemosphere.2016.09.066

    CAS  Article  Google Scholar 

  112. Zhang J, Guo J, Wu Y, Lan Y, Li Y (2017b) Efficient activation of ozone by zero-valent copper for the degradation of aniline in aqueous solution. J Taiwan Inst Chem Eng 0:1–8. https://doi.org/10.1016/j.jtice.2017.09.025

    CAS  Article  Google Scholar 

  113. Zhang F, Dong G, Wang M, Zeng Y, Wang C (2018) Efficient removal of methyl orange using Cu2O as a dual function catalyst. Appl Surf Sci 444:559–568. https://doi.org/10.1016/j.apsusc.2018.03.087

    CAS  Article  Google Scholar 

  114. Zhou T, Lu X, Wang J, Wong F, Li Y (2009) Rapid decolorization and mineralization of simulated textile wastewater in a heterogeneous Fenton like system with/without external energy. J Hazard Mater 165:193–199. https://doi.org/10.1016/j.jhazmat.2008.09.100

    CAS  Article  Google Scholar 

  115. Zhou L, Song W, Chen Z, Yin G (2013) Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environ Sci Technol 47:3833–3839. https://doi.org/10.1021/es400101f

    CAS  Article  Google Scholar 

  116. Zhou P, Zhang J, Liu J, Zhang Y, Liang J, Liu Y, Liu B, Zhang W (2016a) Degradation of organic contaminants by activated persulfate using zero valent copper in acidic. RSC Adv 6:99532–99539. https://doi.org/10.1039/C6RA24431A

    CAS  Article  Google Scholar 

  117. Zhou P, Liu B, Zhang J, Zhang Y, Zhang G (2016b) Radicals induced from peroxomonosulfate by nanoscale zero-valent copper in the acidic solution. Water Res Technol 74:1946–1952. https://doi.org/10.2166/wst.2016.381

    CAS  Article  Google Scholar 

  118. Zhou P, Zhang J, Zhang Y, Liang J, Liu Y, Liu B, Zhang W (2016c) Journal of molecular catalysis A: chemical activation of hydrogen peroxide during the corrosion of nanoscale zero valent copper in acidic solution. J Catal A Chem 424:115–120. https://doi.org/10.1016/j.molcata.2016.08.022

    CAS  Article  Google Scholar 

  119. Zhou P, Zhang J, Zhang Y, Zhang G, Li W, Wei C, Liang J, Liu Y, Shu S (2018a) Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper. J Hazard Mater 344:1209–1219. https://doi.org/10.1016/j.jhazmat.2017.11.023

    CAS  Article  Google Scholar 

  120. Zhou S, Yu Y, Sun J, Zhu S, Deng J (2018b) Oxidation of microcystin-LR by copper (II) coupled with ascorbic acid: kinetic modeling towards generation of H2O2. Chem Eng J 333:443–450. https://doi.org/10.1016/j.cej.2017.09.166

    CAS  Article  Google Scholar 

  121. Zhu Q, Zhang M, Ma Q (2012) Copper-based foliar fertilizer and controlled release urea improved soil chemical properties, plant growth and yield of tomato. Sci Hortic (Amsterdam) 143:109–114. https://doi.org/10.1016/j.scienta.2012.06.008

    CAS  Article  Google Scholar 

  122. Zhu C, Osherov A, Panzer MJ (2013) Surface chemistry of electrodeposited Cu 2 O films studied by XPS. Electrochim Acta 111:771–778. https://doi.org/10.1016/j.electacta.2013.08.038

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio à Pesquisa de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and CNPq/FAPEMIG (agreement recorded in SICONV: 793988/2013).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Renata Pereira Lopes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Vítor Pais Vilar

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Sousa, P.V.F., de Oliveira, A.F., da Silva, A.A. et al. Environmental remediation processes by zero valence copper: reaction mechanisms. Environ Sci Pollut Res 26, 14883–14903 (2019). https://doi.org/10.1007/s11356-019-04989-3

Download citation

Keywords

  • Zero valence copper
  • Environmental remediation
  • Reaction mechanism