Influence of fungi and bag mesh size on litter decomposition and water quality


Litter decomposition is a complex process that is influenced by many different physical, chemical, and biological processes. Environmental variables and leaf litter quality (e.g., nutrient content) are important factors that play a significant role in regulating litter decomposition. In this study, the effects of adding fungi and using different mesh size litter bags on litter (Populus tomentosa Carr. and Salix matsudana Koidz.) decomposition rates and water quality were investigated, and investigate the combination of these factors influences leaf litter decomposition. Dissolved oxygen (DO), chemical oxygen demand (COD), total phosphorus (TP), and ammonia-nitrogen (NH3-N) were measured during the 112-day experiment. The salix leaf litter (k = 0.045) displayed faster decomposition rates than those of populous leaf litter (k = 0.026). Litter decomposition was initially slow and then accelerated; and by the end of the experiment, the decomposition rate was significantly higher (p = 0.012, p < 0.05) when fungi were added to the treatment process compared to the blank, and litter bags with different mesh sizes did not influence the decomposition rate. The variations in the decomposition rates and nutrient content were influenced by litter quality and a number of environmental factors. The decomposition rate was most influenced by internal factors related to litter quality, including the N/P and C/P ratios of the litter. By quantifying the interact effect of environment and litter nutrient dynamic, to figure out the revetment plant litter decomposition process in a wetland system in biological physical and chemical aspects, which can help us in making the variables that determine decomposition rates important for assessing wetland function.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Aber DJ, Melillo MJ (1980) Litter decomposition: measuring relative contributions of organic matter and nitrogen to forest soils. Can J Bot

  2. Aerts R, de Caluwe H (1997) Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78:244.

    Article  Google Scholar 

  3. Ágoston-Szabó E, Schöll K, Kiss A, Dinka M (2016) Mesh size and site effects on leaf litter decomposition in a side arm of the river Danube on the Gemenc floodplain (Danube-Dráva National Park, Hungary). Hydrobiologia 774:53–68.

    Article  CAS  Google Scholar 

  4. Álvarez JA, Bécares E (2006) Seasonal decomposition of Typha latifolia in a free-water surface constructed wetland. Ecol Eng 28:99–105.

    Article  Google Scholar 

  5. Antoine Lecerf, Geta Risnoveanu, Cristina Popescu, Mark O. Gessner, Eric Chauvet, (2007) Decomposition of Diverse Litter Mixtures in Streams. Ecology 88 (1):219-227

  6. Battle JM, Mihuc TB (2000) Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river. Hydrobiologia 418:123–136.

    Article  Google Scholar 

  7. Batty LC, Younger PL (2007) The effect of pH on plant litter decomposition and metal cycling in wetland mesocosms supplied with mine drainage. Chemosphere 66(1):158–164

  8. Bokhorst S, Wardle DA (2013) Microclimate within litter bags of different mesh size: implications for the ‘arthropod effect’ on litter decomposition. Soil Biol Biochem 58:147–152.

    Article  CAS  Google Scholar 

  9. Brinson MM, Lugo AE, Brown S (1981) Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu Rev Ecol Syst 12:123–161.

    Article  Google Scholar 

  10. Brock TCM (1984) Aspects of the decomposition of Nymphoides peltata (Gmel.)O.Kuntze (menyanthaceae). Aquat Bot

  11. Chimney MJ, Pietro KC (2006) Decomposition of macrophyte litter in a subtropical constructed wetland in south Florida (USA). Ecological Engineering 27 (4):301–321

  12. Coûteaux M, Bottner P, Berg B (1995) Litter decomposition, climate and liter quality. Trends Ecol Evol 10:63–66.

    Article  Google Scholar 

  13. Elder JF, Mattraw HC (1984) Accumulation of trace elements, pesticides, and polychlorinated biphenyls in sediments and the clamCorbicula manilensis of the Apalachicola River, Florida. Arch Environ Contam Toxicol 13:453–469.

    Article  CAS  Google Scholar 

  14. Findlay SEG, Dye S, Kuehn KA (2002) Microbial growth and nitrogen retention in litter of phragmites australis compared to typha angustifolia. Wetlands 22:616–625.[0616:MGANRI]2.0.CO;2

  15. Gamage NPD, Asaeda T (2005) Decomposition and mineralization of Eichhornia crassipes litter under aerobic conditions with and without bacteria. Hydrobiologia 541:13–27.

    Article  CAS  Google Scholar 

  16. Gessner MO, Chauvet E (1994) Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75:1807–1817.

    Article  Google Scholar 

  17. Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380.

    Article  Google Scholar 

  18. Gingerich RT, Merovich G, Anderson JT (2014) Influence of environmental parameters on litter decomposition in wetlands in West Virginia, USA. J Freshw Ecol 4:535–549

    Article  CAS  Google Scholar 

  19. Gingerich RT, Panaccione DG, Anderson JT (2015) The role of fungi and invertebrates in litter decomposition in mitigated and reference wetlands. Limnologica - Ecology and Management of Inland Waters 54:23–32.

    Article  CAS  Google Scholar 

  20. Gulis V, Ferreira V, Graca MAS (2006) Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshw Biol 51:1655–1669.

    Article  CAS  Google Scholar 

  21. Güsewell S, Gessner MO (2009) N : P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219.

    Article  Google Scholar 

  22. Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ETHM, Scheu S, Schmid B, van Ruijven J, Vos VCA, Hättenschwiler S (2014) Consequences of biodiversity loss for litter decomposition across biomes. NATURE 509:218–221.

    Article  CAS  Google Scholar 

  23. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and Litter Decomposition in Terrestrial Ecosystems. Annual Review of Ecology, Evolution, and Systematics 36 (1):191–218

  24. Jackson CR, Vallaire SC (2007) Microbial activity and decomposition of fine particulate organic matter in a Louisiana cypress swamp. J N Am Benthol Soc 26:743–753.

    Article  Google Scholar 

  25. Jonsson M, Wardle DA (2008) Context dependency of litter-mixing effects on decomposition and nutrient release across a long-term chronosequence[J]. Oikos 117(11):1674–1682

  26. Kang H, Xin Z, Berg B, Burgess PJ, Liu Q, Liu Z, Li Z, Liu C (2010) Global pattern of leaf litter nitrogen and phosphorus in woody plants. Ann For Sci 67:811.

    Article  CAS  Google Scholar 

  27. Keuskamp JA, Hefting MM, Dingemans BJJ, Verhoeven JTA, Feller IC (2015) Effects of nutrient enrichment on mangrove leaf litter decomposition. Sci Total Environ 508:402–410.

    Article  CAS  Google Scholar 

  28. Koerselman W, Meuleman AFM (1996) The Vegetation N:P Ratio: a New Tool to Detect the Nature of Nutrient Limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  29. Kuehn KA, Lemke MJ, Suberkropp K, Wetzel RG (2000) Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Microbial biomass and production

  30. Kuehn KA, Ohsowski BM, Francoeur SN, Neely RK (2011) Contributions of fungi to carbon flow and nutrient cycling from standing deadTypha angustifolia leaf litter in a temperate freshwater marsh. Limnol Oceanogr 56:529–539.

    Article  CAS  Google Scholar 

  31. Lee A.A, Bukaveckas PA (2002) Surface water nutrient concentrations and litter decomposition rates in wetlands impacted by agriculture and mining activities. Aquatic Botany 74 (4):273-285

  32. Li C, Wong Y, Tam NF (2010) Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry. Bioresour Technol 101:8083–8092.

    Article  CAS  Google Scholar 

  33. Liao CZ, Luo YQ, Fang CM, Chen JK, Li B (2008) Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze estuary. Oecologia 156:589–600.

    Article  Google Scholar 

  34. Lin-hai Z, Cong-sheng Z, Wen-juan Z, Tian-e W, Chuan T (2012) Litter decomposition and its main affecting factors in tidal marshes of Minjiang Riverestuary, East China. J Appl Ecol:2404–2410

  35. Moretto AS, Distel RA, Didoné NG (2001) Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Applied Soil Ecology 18 (1):31-37

  36. Olson JS (1963) Energy Storage and the Balance of Producers and Decomposers in Ecological Systems Author(s): Jerry S. Olson Source: Ecology, Vol. 44, No. 2 (Apr., 1963), pp. 322–331 Published by: Ecological Society of America Stable URL: Accessed 27 Aug 2008 14:09

  37. Ozalp M, Conner WH, Lockaby BG (2007) Above-ground productivity and litter decomposition in a tidal freshwater forested wetland on Bull Island, SC, USA. Forest Ecology and Management 245 (1-3):31-43

  38. Poret-Peterson A T , Ji B , Engelhaupt E , et al. Soil microbial biomass along a hydrologic gradient in a subsiding coastal bottomland forest: Implications for future subsidence and sea-level rise[J]. Soil Biology & Biochemistry, 2007, 39(2):641-645.

  39. Rejmánková E, Sirová D (2007) Wetland macrophyte decomposition under different nutrient conditions: relationships between decomposition rate, enzyme activities and microbial biomass. Soil Biol Biochem 39:526–538.

    Article  CAS  Google Scholar 

  40. Rouifed S, Handa IT, David J-F, Hättenschwiler S (2010) The importance of biotic factors in predicting global change effects on decomposition of temperate forest leaf litter. Oecologia 163 (1):247–256

  41. Schimel J (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563.

    Article  CAS  Google Scholar 

  42. Schlickeisen E, Tietjen TE, Arsuffi TL, Groeger AW (2003) Detritus processing and microbial dynamics of an aquatic Macrophyte and terrestrial leaf in a thermally constant, spring-fed stream. Microb Ecol 45:411–418.

    Article  CAS  Google Scholar 

  43. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems[J]. Studies in Ecology 5(14):2772–2774

  44. Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and Lignin Content as Predictors of Litter Decay Rates: A Microcosm Test. Ecology 70(1):97–104

  45. Tessier TJ, Raynal JD (2003) Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J Appl Ecol 40:523–534.

    Article  CAS  Google Scholar 

  46. Tristan Gingerich R, Anderson JT (2011) Litter decomposition in created and reference wetlands in West Virginia, USA. Wetl Ecol Manag 19:449–458.

    Article  Google Scholar 

  47. Wang S, Ruan H, Han Y (2010) Effects of microclimate, litter type, and mesh size on leaf litter decomposition along an elevation gradient in the Wuyi Mountains, China. Ecol Res 25:1113–1120.

    Article  Google Scholar 

  48. Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–594.

    Article  Google Scholar 

  49. Wu H, Lu X, Yang Q (2006) Factors affecting litter decomposition of wetland herbaceous macrophytes. Chin J Ecol:1405–1411

  50. Wu S, He S, Huang J, Gu J, Zhou W, Gao L (2017) Decomposition of emergent aquatic plant (cattail) litter under different conditions and the influence on water quality. Water Air Soil Pollut 228:1–14.

    Article  CAS  Google Scholar 

Download references


The authors acknowledge the constructive comments provided by both the reviewers and editors.


This research was supported by the National Key R&D Program of China (2017YFC0505903).

Author information



Corresponding authors

Correspondence to Zhenming Zhang or Mingxiang Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhai, J., Cong, L., Yan, G. et al. Influence of fungi and bag mesh size on litter decomposition and water quality. Environ Sci Pollut Res 26, 18304–18315 (2019).

Download citation


  • Decomposition
  • Leaf litter
  • Water quality
  • Fungi
  • Mesh size