Advertisement

Mercury detoxification by absorption, mercuric ion reductase, and exopolysaccharides: a comprehensive study

  • Shalini Singh
  • Vipin KumarEmail author
Sustainable Industrial and Environmental Bioprocesses
  • 120 Downloads

Abstract

Mercury (Hg), the environmental toxicant, is present in the soil, water, and air as it is substantially distributed throughout the environment. Being extremely toxic even at low concentration, its remediation is utterly important. Therefore, it is necessary to detoxify the contaminant within the acceptable limits before threatening the environment. Although various conventional methods are being used, irrespective of high cost, it produces intermediate toxic by-product too. Biological methods are eco-friendly, clean, greener, and safer for the remediation of heavy metals corresponding to the conventional remediation due to their economic and high-tech constraints. Bioremediation is now being used for Hg (II) removal, which involves biosorption and bioaccumulation mechanisms or both, also mercuric ion reductase, exopolysaccharide play significant role in detoxification of mercury by acting a potential instrument for the remediation of heavy metals. In this review paper, we shed light on problems caused by mercury pollution, mercury cycle, and its global scenario and detoxification approaches by biological methods and result found in the literature.

Keywords

Mercury Bioremediation Biosorption Biosorbent Bioaccumulation Mercury reductase enzyme Exopolysaccharides Phytoremediation 

Notes

Acknowledgements

The authors are extremely grateful to the Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, for providing needed facilities, support, and encouragements during the construction of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdoun-Ouallouche K, Djefal-Kerrar A, Amrani S, Zerrouki S (2014) Removal of lead and mercury from aqueous solutions by pretreated Rhizopus stolonifer biomass. Int Proc Chem, Biol Environ Eng 51(26):139–142Google Scholar
  2. Abu Tawila Z, Ismail S, Dadrasnia A, Usman M (2018) Production and characterization of a bioflocculant produced by Bacillus salmalaya 139SI-7 and its applications in wastewater treatment. Molecules 23(10):2689CrossRefGoogle Scholar
  3. Aksu Z, Dönmez G (2005) Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis. Process Biochem 40(7):2443–2454CrossRefGoogle Scholar
  4. Al Rmalli SW, Dahmani AA, Abuein MM, Gleza AA (2008) Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.). J Hazard Mater 152(3):955–959CrossRefGoogle Scholar
  5. Ariya PA, Amyot M, Dastoor A, Deeds D, Feinberg A, Kos G, Toyota K (2015) Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: a review and future directions. Chem Rev 115(10):3760–3802CrossRefGoogle Scholar
  6. Azevedo R, Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. J Bot 2012:1–6CrossRefGoogle Scholar
  7. Bafana A, Khan F, Suguna K (2017) Structural and functional characterization of mercuric reductase from Lysinibacillus sphaericus strain G1. BioMetals 30(5):809–819CrossRefGoogle Scholar
  8. Baldi F, Gallo M, Daniele S, Battistel D, Faleri C, Kodre A, Arčon I (2017) An extracellular polymeric substance quickly chelates mercury (II) with N-heterocyclic groups. Chemosphere 176:296–304CrossRefGoogle Scholar
  9. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27(2–3):355–384CrossRefGoogle Scholar
  10. Barker AV, Bryson GM (2002) Bioremediation of heavy metals and organic toxicants by composting. Sci World J 2:407–420CrossRefGoogle Scholar
  11. Belzile N, Wu GJ, Chen YW, Appanna VD (2006) Detoxification of selenite and mercury by reduction and mutual protection in the assimilation of both elements by Pseudomonas fluorescens. Sci Total Environ 367(2–3):704–714CrossRefGoogle Scholar
  12. BHEL (2004) Report no. PCI/001/2004, Assessment and development of environmental standards of heavy metals and trace elements emission from coal based thermal power plant. PCRI, BHEL, Haridwar, IndiaGoogle Scholar
  13. Bjørklund G, Aaseth J, Ajsuvakova OP, Nikonorov AA, Skalny AV, Skalnaya MG, Tinkov AA (2017) Molecular interaction between mercury and selenium in neurotoxicity. Coord Chem Rev 332:30–37CrossRefGoogle Scholar
  14. Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Tinkov AA (2018) Toxic metal (loid)-based pollutants and their possible role in autism spectrum disorder. Environ Res 166:234–250CrossRefGoogle Scholar
  15. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40(12):1335–1351CrossRefGoogle Scholar
  16. Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18(1):85–90CrossRefGoogle Scholar
  17. Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27(2-3):145–163CrossRefGoogle Scholar
  18. Cain A, Vannela R, Woo LK (2008) Cyanobacteria as a biosorbent for mercuric ion. Bioresour Technol 99(14):6578–6586CrossRefGoogle Scholar
  19. Chakraborty K, Bishi SK, Goswami N, Singh AL, Zala PV (2016) Differential fine-regulation of enzyme driven ROS detoxification network imparts salt tolerance in contrasting peanut genotypes. Environ Exp Bot 128:79–90CrossRefGoogle Scholar
  20. Chojnacka K (2010) Biosorption and bioaccumulation–the prospects for practical applications. Environ Int 36(3):299–307CrossRefGoogle Scholar
  21. Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213CrossRefGoogle Scholar
  22. Dash HR, Mangwani N, Das S (2014) Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environ Sci Pollut Res 21(4):2642–2653CrossRefGoogle Scholar
  23. Dash HR, Sahu M, Mallick B, Das S (2017) Functional efficiency of MerA protein among diverse mercury resistant bacteria for efficient use in bioremediation of inorganic mercury. Biochimie 142:207–215CrossRefGoogle Scholar
  24. De J, Ramaiah N (2007) Characterization of marine bacteria highly resistant to mercury exhibiting multiple resistances to toxic chemicals. Ecol Indic 7(3):511–520CrossRefGoogle Scholar
  25. De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10(4):471–477CrossRefGoogle Scholar
  26. Deng X, Wang P (2012) Isolation of marine bacteria highly resistant to mercury and their bioaccumulation process. Bioresour Technol 121:342–347CrossRefGoogle Scholar
  27. Dranguet P, Le Faucheur S, Cosio C, Slaveykova VI (2017) Influence of chemical speciation and biofilm composition on mercury accumulation by freshwater biofilms. Environ Sci: Processes Impacts 19(1):38–49Google Scholar
  28. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47(10):4967–4983CrossRefGoogle Scholar
  29. Dzairi FZ, Zeroual Y, Moutaouakkil A, Taoufik J, Talbi M, Loutfi M, Blaghen M (2004) Bacterial volatilization of mercury by immobilized bacteria in fixed and fluidized bed bioreactors. Ann Microbiol 54(4):353–364Google Scholar
  30. Ekyastuti W, Setyawati TR (2015) Identification and in vitro effectiveness test of four isolates of mercury-resistant bacteria as bioaccumulation agents of mercury. Procedia Environ Sci 28:258–264CrossRefGoogle Scholar
  31. Engle MA, Gustin MS, Lindberg SE, Gertler AW, Ariya PA (2005) The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates. Atmos Environ 39(39):7506–7517CrossRefGoogle Scholar
  32. Esmaeili A, Saremnia B, Kalantari M (2015a) Removal of mercury (II) from aqueous solutions by biosorption on the biomass of Sargassum glaucescens and Gracilaria corticata. Arab J Chem 8(4):506–511CrossRefGoogle Scholar
  33. Esmaeili A, Saremnia B, Kalantari M (2015b) Removal of mercury (II) from aqueous solutions by biosorption on the biomass of Sargassum glaucescens and Gracilaria corticata. Arab J Chem 8(4):506–511CrossRefGoogle Scholar
  34. Fard GH, Mehrnia MR (2017) Investigation of mercury removal by micro-algae dynamic membrane bioreactor from simulated dental waste water. J Environ Chem Eng 5(1):366–372CrossRefGoogle Scholar
  35. Fernández-Martínez R, Larios R, Gómez-Pinilla I, Gómez-Mancebo B, López-Andrés S, Loredo J, Rucandio I (2015) Mercury accumulation and speciation in plants and soils from abandoned cinnabar mines. Geoderma 253:30–38CrossRefGoogle Scholar
  36. Figueiredo NL, Areias A, Mendes R, Canário J, Duarte A, Carvalho C (2014a) Mercury-resistant bacteria from salt marsh of Tagus Estuary: the influence of plants presence and mercury contamination levels. J Toxic Environ Health A 77(14–16):959–971CrossRefGoogle Scholar
  37. Figueiredo NL, Canário J, Duarte A, Serralheiro ML, Carballo C (2014b) Isolation and characterization of mercury-resistant bacteria from sediments of Tagus Estuary (Portugal): implications for environmental and human health risk assessment. J Toxic Environ Health A 77(1–3):155–168CrossRefGoogle Scholar
  38. Figueiredo NL, Canário J, O’Driscoll NJ, Duarte A, Carvalho C (2016) Aerobic mercury-resistant bacteria alter mercury speciation and retention in the Tagus Estuary (Portugal). Ecotoxicol Environ Saf 124:60–67CrossRefGoogle Scholar
  39. Fox RD (1996) Physical/chemical treatment of organically contaminated soils and sediments. J Air Waste Manage Assoc 46(5):391–413CrossRefGoogle Scholar
  40. Franco W, Mendes LA, Windmöller CC, Moura KAF, Oliveira LAG, Barbosa FAR (2018) Mercury methylation capacity and removal of Hg species from aqueous medium by cyanobacteria. Water Air Soil Pollut 229(4):127–139CrossRefGoogle Scholar
  41. François F, Lombard C, Guigner JM, Soreau P, Brian-Jaisson F, Martino G, Peduzzi J (2012) Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Appl Environ Microbiol 78(4):1097–1106CrossRefGoogle Scholar
  42. Freedman Z, Zhu C, Barkay T (2012) Mercury resistance and mercuric reductase activities and expression among chemotrophic thermophilic Aquificae. Appl Environ Microbiol 78(18):6568–6575CrossRefGoogle Scholar
  43. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163(2–3):475–510CrossRefGoogle Scholar
  44. Gilmour CC, Bullock AL, McBurney A, Podar M, Elias DA (2018) Robust mercury methylation across diverse methanogenic archaea. MBio 9(2):e02403–e02417CrossRefGoogle Scholar
  45. Giovanella P, Cabral L, Bento FM, Gianello C, Camargo FAO (2016) Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A. New Biotechnol 33(1):216–223CrossRefGoogle Scholar
  46. Giovanella P, Cabral L, Costa AP, de Oliveira Camargo FA, Gianello C, Bento FM (2017) Metal resistance mechanisms in gram-negative bacteria and their potential to remove Hg in the presence of other metals. Ecotoxicol Environ Saf 140:162–169CrossRefGoogle Scholar
  47. Gómez-Jacinto V, García-Barrera T, Gómez-Ariza JL, Garbayo-Nores I, Vílchez-Lobato C (2015) Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. Identification of Hg–phytochelatins. Chemico-Biol Interact 238:82–90CrossRefGoogle Scholar
  48. Gonzalez-Raymat H, Liu G, Liriano C, Li Y, Yin Y, Shi J, Cai Y (2017) Elemental mercury: its unique properties affect its behavior and fate in the environment. Environ Pollut 229:69–86CrossRefGoogle Scholar
  49. Gray JE, Theodorakos PM, Fey DL, Krabbenhoft DP (2015) Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA. Environ Geochem Health 37(1):35–48CrossRefGoogle Scholar
  50. Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71CrossRefGoogle Scholar
  51. Gupta P, Kumar V (2017) Value added phytoremediation of metal stressed soils using phosphate solubilizing microbial consortium. World J Microbiol Biotechnol 33(1):1–15CrossRefGoogle Scholar
  52. Gupta NK, Sengupta A, Gupta A, Sonawane JR, Sahoo H (2018) Biosorption-an alternative method for nuclear waste management: a critical review. J Environ Chem Eng 6(2):2159–2175CrossRefGoogle Scholar
  53. Gururajan K, Belur PD (2018) Screening and selection of indigenous metal tolerant fungal isolates for heavy metal removal. Environ Technol Innov 9:91–99CrossRefGoogle Scholar
  54. Gworek B, Bemowska-Kałabun O, Kijeńska M, Wrzosek-Jakubowska J (2016) Mercury in marine and oceanic waters—a review. Water Air Soil Pollut 227(10):227–371CrossRefGoogle Scholar
  55. Hadiani MR, Khosravi-Darani K, Rahimifard N, Younesi H (2018) Assessment of mercury biosorption by Saccharomyces cerevisiae: response surface methodology for optimization of low Hg (II) concentrations. J Environ Chem Eng 6(4):4980–4987CrossRefGoogle Scholar
  56. Hansda A, Kumar V (2016) A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J Microbiol Biotechnol 32(10):170CrossRefGoogle Scholar
  57. Henriques B, Rocha LS, Lopes CB, Figueira P, Monteiro RJ, Duarte AC, Pereira E (2015) Study on bioaccumulation and biosorption of mercury by living marine macroalgae: prospecting for a new remediation biotechnology applied to saline waters. Chem Eng J 281:759–770CrossRefGoogle Scholar
  58. Henriques B, Lopes CB, Figueira P, Rocha LS, Duarte AC, Vale C, Pereira E (2017) Bioaccumulation of Hg, Cd and Pb by Fucus vesiculosus in single and multi-metal contamination scenarios and its effect on growth rate. Chemosphere 171:208–222CrossRefGoogle Scholar
  59. Herrero R, Lodeiro P, Rey-Castro C, Vilariño T, De Vicente MES (2005) Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga Cystoseira baccata. Water Res 39(14):3199–3210CrossRefGoogle Scholar
  60. Hindersah R, Asda KR, Herdiyantoro D, Kamaluddin NN (2018) Isolation of mercury-resistant fungi from mercury-contaminated agricultural soil. Agriculture 8(3):33–40CrossRefGoogle Scholar
  61. Hong L, Sharp MA, Poblete S, Biehl R, Zamponi M, Szekely N, Parks JM (2014) Structure and dynamics of a compact state of a multidomain protein, the mercuric ion reductase. Biophys J 107(2):393–400CrossRefGoogle Scholar
  62. Hoque E, Fritscher J (2016) A new mercury-accumulating Mucor hiemalis strain EH8 from cold sulfidic spring water biofilms. Microbiol Open 5(5):763–781CrossRefGoogle Scholar
  63. Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–35CrossRefGoogle Scholar
  64. Huang CC, Chien MF, Lin KH (2010) Bacterial mercury resistance of TnMERI1 and its’ application in bioremediation. Interdiscip Stud Environ Chem 3(11):21–29Google Scholar
  65. Huang Y, Deng M, Li T, Japenga J, Chen Q, Yang X, He Z (2017) Anthropogenic mercury emissions from 1980 to 2012 in China. Environ Pollut 226:230–239CrossRefGoogle Scholar
  66. Infante J, De Arco R, Angulo M (2014) Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae. Rev MVZ Córdoba 19(2):4141–4149CrossRefGoogle Scholar
  67. Irawati W, Soraya Y, Baskoro AH (2012) A study on mercury-resistant bacteria isolated from a gold mine in Pongkor Village, Bogor, Indonesia. HAYATI J Biosci 19(4):197–200CrossRefGoogle Scholar
  68. Israr M, Sahi SV (2006) Antioxidative responses to mercury in the cell cultures of Sesbania drummondii. Plant Physiol Biochem 44(10):590–595CrossRefGoogle Scholar
  69. Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, Pugazhendhi A (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manag 217:56–70CrossRefGoogle Scholar
  70. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72CrossRefGoogle Scholar
  71. Ji H, Zhang Y, Bararunyeretse P, Li H (2018) Characterization of microbial communities of soils from gold mine tailings and identification of mercury-resistant strain. Ecotoxicol Environ Saf 165:182–193CrossRefGoogle Scholar
  72. Jiang P, Liu G, Cui W, Cai Y (2018) Geochemical modeling of mercury speciation in surface water and implications on mercury cycling in the everglades wetland. Sci Total Environ 640:454–465CrossRefGoogle Scholar
  73. Jobby R, Jha P, Yadav AK, Desai N (2018) Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: a comprehensive review. Chemosphere 207:255–266CrossRefGoogle Scholar
  74. Kadukova J, Vircikova E (2005) Comparison of differences between copper bioaccumulation and biosorption. Environ Int 31(2):227–232CrossRefGoogle Scholar
  75. Kalpana R, Angelaalincy MJ, Kamatchirajan BV, Vasantha VS, Ashokkumar B, Ganesh V, Varalakshmi P (2018) Exopolysaccharide from Bacillus cereus VK1: enhancement, characterization and its potential application in heavy metal removal. Colloids Surf B: Biointerfaces 171:327–334CrossRefGoogle Scholar
  76. Kannan SK, Krishnamoorthy R (2006) Isolation of mercury resistant bacteria and influence of abiotic factors on bioavailability of mercury—a case study in Pulicat Lake north of Chennai, south east India. Sci Total Environ 367(1):341–353CrossRefGoogle Scholar
  77. Karunasagar D, Krishna MB, Anjaneyulu YA, Arunachala J (2006) Studies of mercury pollution in a lake due to a thermometer factory situated in a tourist resort: Kodaikkanal, India. Environ Pollut 143(1):153–158CrossRefGoogle Scholar
  78. Khoramzadeh E, Nasernejad B, Halladj R (2013) Mercury biosorption from aqueous solutions by sugarcane bagasse. J Taiwan Inst Chem Eng 44(2):266–269CrossRefGoogle Scholar
  79. Kim MK, Zoh KD (2013) Erratum: fate and transport of mercury in environmental media and human exposure. J Prev Med Public Health 46(4):335–343Google Scholar
  80. Kim PR, Han YJ, Holsen TM, Yi SM (2012) Atmospheric particulate mercury: concentrations and size distributions. Atmos Environ 61:94–102CrossRefGoogle Scholar
  81. Kotwal DR, Shewale NB, Tambat US, Thakare MJ, Bholay AD (2018) Bioremediation of mercury using mercury resistant bacteria. Res J Life Sci, Bioinf, Pharm Chem Sci 4(2):146–156Google Scholar
  82. Kowalczyk A, Wilińska M, Chyc M, Bojko M, Latowski D (2016) Isolation, screening and identification of mercury resistant bacteria from mercury contaminated soil. In E3S Web of Conferences (Vol. 10, p. 00042). EDP SciencesGoogle Scholar
  83. Kumar JN, Oommen C, Kumar RN (2009) Biosorption of heavy metals from aqueous solution by green marine macroalgae from Okha Port, Gulf of Kutch, India. Am Eurasian J Agric Environ Sci 6(3):317–323Google Scholar
  84. Kumari R (2011) Preliminary mercury emission estimates from non-ferrous metal smelting in India. Atmos Pollut Res 2(4):513–519CrossRefGoogle Scholar
  85. Kumari A, Kumar B, Manzoor S, Kulshrestha U (2015) Status of atmospheric mercury research in South Asia: a review. Aerosol Air Qual Res 15:1092–1109CrossRefGoogle Scholar
  86. Kurane R, Hatamochi K, Kakuno T, Kiyohara M, Hirano M, Taniguchi Y (1994) Production of a bioflocculant by Rhodococcus erythropolis S-1 grown on alcohols. Biosci Biotechnol Biochem 58:428–429CrossRefGoogle Scholar
  87. Kurniati E, Arfarita N, Imai T (2014a) Potential use of Aspergillus flavus strain KRP1 in utilization of mercury contaminant. Procedia Environ Sci 20:254–260CrossRefGoogle Scholar
  88. Kurniati E, Arfarita N, Imai T, Higuchi T, Kanno A, Yamamoto K, Sekine M (2014b) Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. J Environ Sci 26(6):1223–1231CrossRefGoogle Scholar
  89. Lee DJ, Chang YR (2018) Bioflocculants from isolated stains: a research update. J Taiwan Inst Chem Eng 87:211–215CrossRefGoogle Scholar
  90. Li P, Feng XB, Qiu GL, Shang LH, Li ZG (2009) Mercury pollution in Asia: a review of the contaminated sites. J Hazard Mater 168(2–3):591–601CrossRefGoogle Scholar
  91. Li X, Zhang D, Sheng F, Qing H (2018) Adsorption characteristics of copper (II), zinc (II) and mercury (II) by four kinds of immobilized fungi residues. Ecotoxicol Environ Saf 14:357–366CrossRefGoogle Scholar
  92. Liu N, Liu S, Gan Y, Zhang Q, Wang X, Liu S, Dai J (2017a) Evaluation of mercury resistance and accumulation characteristics in wheat using a modified membership function. Ecol Indic 78:292–300CrossRefGoogle Scholar
  93. Liu Z, Wang LA, Xu J, Ding S, Feng X, Xiao H (2017b) Effects of different concentrations of mercury on accumulation of mercury by five plant species. Ecol Eng 106:273–278CrossRefGoogle Scholar
  94. Liu M, Zhang Q, Luo Y, Mason RP, Ge S, He Y, Chen L (2018) Impact of water-induced soil erosion on the terrestrial transport and atmospheric emission of mercury in China. Environ Sci Technol 52(12):6945–6956CrossRefGoogle Scholar
  95. Low KE, Howell PL (2018) Gram-negative synthase-dependent exopolysaccharide biosynthetic machines. Curr Opin Struct Biol 53:32–44CrossRefGoogle Scholar
  96. Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas. Ann Bot 115(3):509–528CrossRefGoogle Scholar
  97. Ma F, Zhang Q, Xu D, Hou D, Li F, Gu Q (2014) Mercury removal from contaminated soil by thermal treatment with FeCl3 at reduced temperature. Chemosphere 117:388–393CrossRefGoogle Scholar
  98. Mahbub KR, Krishnan K, Megharaj M, Naidu R (2016a) Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil. Chemosphere 144:330–337CrossRefGoogle Scholar
  99. Mahbub KR, Krishnan K, Naidu R, Megharaj M (2016b) Mercury resistance and volatilization by Pseudoxanthomonas sp. SE1 isolated from soil. Environ Technol Innov 6:94–104CrossRefGoogle Scholar
  100. Mahbub KR, Krishnan K, Naidu R, Megharaj M (2017) Mercury remediation potential of a mercury resistant strain Sphingopyxis sp. SE2 isolated from contaminated soil. J Environ Sci 51:128–137CrossRefGoogle Scholar
  101. Malik A (2004) Metal bioremediation through growing cells. Environ Int 30(2):261–278CrossRefGoogle Scholar
  102. Mechirackal Balan B, Shini S, Krishnan KP, Mohan M (2018) Mercury tolerance and biosorption in bacteria isolated from Ny-Ålesund, Svalbard, Arctic. J Basic Microbiol 58(4):286–295CrossRefGoogle Scholar
  103. Messer RL, Lockwood PE, Tseng WY, Edwards K, Shaw M, Caughman GB, Wataha JC (2005) Mercury (II) alters mitochondrial activity of monocytes at sublethal doses via oxidative stress mechanisms. J Biomed Mater Res B Appl Biomater 75(2):257–263CrossRefGoogle Scholar
  104. Mirzaei N, Kafilzadeh F, Kargar M (2008) Isolation and identification of mercury resistant bacteria from Kor River, Iran. J Biol Sci 8(5):935–939CrossRefGoogle Scholar
  105. Misra TK (1992) Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid 27(1):4–16CrossRefGoogle Scholar
  106. Mokone JG, Tutu H, Chimuka L, Cukrowska EM (2018) Optimization and characterization of Cladophora sp. alga immobilized in alginate beads and silica gel for the biosorption of mercury from aqueous solutions. Water Air Soil Pollut 229(7):215–229CrossRefGoogle Scholar
  107. Moreno-Jiménez E, Gamarra R, Carpena-Ruiz RO, Millán R, Peñalosa JM, Esteban E (2006) Mercury bioaccumulation and phytotoxicity in two wild plant species of Almadén area. Chemosphere 63(11):1969–1973CrossRefGoogle Scholar
  108. Mortazavi S, Rezaee A, Khavanin A, Varmazyar S, Jafarzadeh M (2005) Removal of mercuric chloride by a mercury resistant Pseudomonas putida strain. J Biol Sci 5:269–273CrossRefGoogle Scholar
  109. Mukkata K, Kantachote D, Wittayaweerasak B, Megharaj M, Naidu R (2018) The potential of mercury resistant purple nonsulfur bacteria as effective biosorbents to remove mercury from contaminated areas. Biocatal Agric Biotechnol 17:93–103CrossRefGoogle Scholar
  110. Nakamura K, Nakahara H (1988) Simplified X-ray film method for detection of bacterial volatilization of mercury chloride by Escherichia coli. Appl Environ Microbiol 54(11):2871–2873Google Scholar
  111. Noroozi M, Amoozegar MA, Pourbabaei AA, Naghavi NS, Nourmohammadi Z (2017) Isolation and characterization of mercuric reductase by newly isolated halophilic bacterium, Bacillus firmus MN8. Glob J Environ Sci Manag 3(4):427–436Google Scholar
  112. Oyetibo GO, Miyauchi K, Suzuki H, Ishikawa S, Endo G (2016) Extracellular mercury sequestration by exopolymeric substances produced by Yarrowia spp.: thermodynamics, equilibria, and kinetics studies. J Biosci Bioeng 122(6):701–707CrossRefGoogle Scholar
  113. Panda KK, Lenka M, Panda BB (1990) Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant I. Distribution, availability and genotoxicity of sediment mercury in the Rushikulya estuary, India. Sci Total Environ 96(3):281–296CrossRefGoogle Scholar
  114. Park SI, Kim YS, Kim JJ, Mok JE, Kim YH, Park HM, Yoon HS (2017) Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions. J Plant Physiol 215:39–47CrossRefGoogle Scholar
  115. Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66(3):379–422CrossRefGoogle Scholar
  116. Peng Y, Deng A, Gong X, Li X, Zhang Y (2017) Coupling process study of lipid production and mercury bioremediation by biomimetic mineralized microalgae. Bioresour Technol 243:628–633CrossRefGoogle Scholar
  117. Pepi M, Gaggi C, Bernardini E, Focardi S, Lobianco A, Ruta M, Renzi P (2011) Mercury-resistant bacterial strains Pseudomonas and Psychrobacter spp. isolated from sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes. Int Biodeterior Biodegrad 65(1):85–91CrossRefGoogle Scholar
  118. Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Telmer K (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10(13):5951–5964CrossRefGoogle Scholar
  119. Plaza J, Viera M, Donati E, Guibal E (2011) Biosorption of mercury by Macrocystis pyrifera and Undaria pinnatifida: influence of zinc, cadmium and nickel. J Environ Sci 23(11):1778–1786CrossRefGoogle Scholar
  120. Poulain AJ, Chadhain SMN, Ariya PA, Amyot M, Garcia E, Campbell PG, Barkay T (2007) Potential for mercury reduction by microbes in the high arctic. Appl Environ Microbiol 73(7):2230–2238CrossRefGoogle Scholar
  121. Pushkar B, Sevak P, Sounderajan S (2019) Assessment of the bioremediation efficacy of the mercury resistant bacterium isolated from the Mithi River. Water Sci Technol Water Supply 19(1):191–199Google Scholar
  122. Raj D, Chowdhury A, Maiti SK (2017) Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: a case study from the eastern part of a Jharia coal field, India. Hum Ecol Risk Assess: Int J 23(4):767–787CrossRefGoogle Scholar
  123. Ranchou-Peyruse M, Goñi-Urriza M, Guignard M, Goas M, Ranchou-Peyruse A, Guyoneaud R (2018) Pseudodesulfovibrio hydrargyri sp. nov., a mercury-methylating bacterium isolated from a brackish sediment. Int J Syst Evol Microbiol 68:1461–1466CrossRefGoogle Scholar
  124. Randall PM, Chattopadhyay S (2013) Mercury contaminated sediment sites—an evaluation of remedial options. Environ Res 125:131–149CrossRefGoogle Scholar
  125. Rasulov BA, Yili A, Aisa HA (2013) Biosorption of metal ions by exopolysaccharide produced by Azotobacter chroococcum XU1. J Environ Prot 4(09):989–993CrossRefGoogle Scholar
  126. Ravichandran M (2004) Interactions between mercury and dissolved organic matter—a review. Chemosphere 55(3):319–331CrossRefGoogle Scholar
  127. Robinson JB, Tuovinen OH (1984) Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses. Microbiol Rev 48(2):95–124Google Scholar
  128. Rojas LA, Yáñez C, González M, Lobos S, Smalla K, Seeger M (2011) Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS One 6(3):e17555CrossRefGoogle Scholar
  129. Saranya K, Sundaramanickam A, Shekhar S, Swaminathan S, Balasubramanian T (2017) Bioremediation of mercury by Vibrio fluvialis screened from industrial effluents. Biomed Res Int 2017:1–6CrossRefGoogle Scholar
  130. Sardar UR, Bhargavi E, Devi I, Bhunia B, Tiwari ON (2018) Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: a critical review. Carbohydr Polym 199:353–364CrossRefGoogle Scholar
  131. Sharma V, Pant D (2017) Structural basis for expanding the application of bioligand in metal bioremediation: a review. Bioresour Technol 252(2018):188–197Google Scholar
  132. Sinha A, Kumar S, Khare SK (2013) Biochemical basis of mercury remediation and bioaccumulation by Enterobacter sp. EMB21. Appl Biochem Biotechnol 169(1):256–267CrossRefGoogle Scholar
  133. Skinner K, Wright N, Porter-Goff E (2007) Mercury uptake and accumulation by four species of aquatic plants. Environ Pollut 145(1):234–237CrossRefGoogle Scholar
  134. Sorkhoh NA, Ali N, Al-Awadhi H, Dashti N, Al-Mailem DM, Eliyas M, Radwan SS (2010a) Phytoremediation of mercury in pristine and crude oil contaminated soils: contributions of rhizobacteria and their host plants to mercury removal. Ecotoxicol Environ Saf 73(8):1998–2003CrossRefGoogle Scholar
  135. Sorkhoh NA, Ali N, Dashti N, Al-Mailem DM, Al-Awadhi H, Eliyas M, Radwan SS (2010b) Soil bacteria with the combined potential for oil utilization, nitrogen fixation, and mercury resistance. Int Biodeterior Biodegrad 64(3):226–231CrossRefGoogle Scholar
  136. Subudhi S, Bisht V, Batta N, Pathak M, Devi A, Lal B (2016) Purification and characterization of exopolysaccharide bioflocculant produced by heavy metal resistant Achromobacter xylosoxidans. Carbohydr Polym 137:441–451CrossRefGoogle Scholar
  137. Svecova L, Spanelova M, Kubal M, Guibal E (2006) Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry. I Equilibrium studies. Sep Purif Technol 52(1):142–153CrossRefGoogle Scholar
  138. Tuzen M, Sarı A (2010) Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem Eng J 158(2):200–206CrossRefGoogle Scholar
  139. Tuzun I, Bayramoğlu G, Yalçın E, Başaran G, Celik G, Arıca MY (2005) Equilibrium and kinetic studies on biosorption of Hg (II), Cd (II) and Pb (II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manag 77(2):85–92CrossRefGoogle Scholar
  140. United Nations Environmental Programme (UNEP) (2008) The global atmospheric mercury assessment: sources, emissions and transportGoogle Scholar
  141. Urík M, Hlodák M, Mikušová P, Matúš P (2014) Potential of microscopic fungi isolated from mercury contaminated soils to accumulate and volatilize mercury (II). Water Air Soil Pollut 225(12):2219CrossRefGoogle Scholar
  142. Vacchina V, Séby F, Chekri R, Verdeil J, Dumont J, Hulin M, Simon T (2017) Optimization and validation of the methods for the total mercury and methylmercury determination in breast milk. Talanta 167:404–410CrossRefGoogle Scholar
  143. Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44(3):301–316CrossRefGoogle Scholar
  144. Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26(3):266–291CrossRefGoogle Scholar
  145. Volesky B (2007) Biosorption and me. Water Res 41(18):4017–4029CrossRefGoogle Scholar
  146. Von Canstein H, Li Y, Timmis KN, Deckwer WD, Wagner-Döbler I (1999) Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant pseudomonas putida strain. Appl Environ Microbiol 65(12):5279–5284Google Scholar
  147. Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451CrossRefGoogle Scholar
  148. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226CrossRefGoogle Scholar
  149. Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012) Remediation of mercury contaminated sites—a review. J Hazard Mater 221:1–18Google Scholar
  150. Wang X, He Z, Luo H, Zhang M, Zhang D, Pan X, Gadd GM (2018) Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium. Sci Total Environ 615:615–623CrossRefGoogle Scholar
  151. Wei W, Wang Q, Li A, Yang J, Ma F, Pi S, Wu D (2016) Biosorption of Pb (II) from aqueous solution by extracellular polymeric substances extracted from Klebsiella sp. J1: adsorption behavior and mechanism assessment. Sci Rep 6:31575CrossRefGoogle Scholar
  152. Xun Y, Feng L, Li Y, Dong H (2017) Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites. Chemosphere 189:161–170CrossRefGoogle Scholar
  153. Yadav S, Upadhyay S, Tripathi SK, Prakash R (2017) Heavy metal pollution and health hazards around singrauli region India. IJAR 3(5):05–08Google Scholar
  154. Yang DY, Chen YW, Gunn JM, Belzile N (2008) Selenium and mercury in organisms: interactions and mechanisms. Environ Rev 16(NA):71–92CrossRefGoogle Scholar
  155. Yavuz H, Denizli A, Güngüneş H, Safarikova M, Safarik I (2006) Biosorption of mercury on magnetically modified yeast cells. Sep Purif Technol 52(2):253–260CrossRefGoogle Scholar
  156. Yildiz H, Karatas N (2018) Microbial exopolysaccharides: resources and bioactive properties. Process Biochem 72:41–46CrossRefGoogle Scholar
  157. Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52(1):113–144Google Scholar
  158. Zarei S, Niad M (2017) Cystoseira myricaas for mercury (II) uptake: isotherm, kinetics, thermodynamic, response surface methodology and fuzzy modeling. J Taiwan Inst Chem Eng 81:247–257CrossRefGoogle Scholar
  159. Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831CrossRefGoogle Scholar
  160. Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120(3):849–858CrossRefGoogle Scholar
  161. Zhang W, Chen L, Liu D (2012) Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol 93(3):1305–1314CrossRefGoogle Scholar
  162. Zheng R, Wu S, Ma N, Sun C (2018) Genetic and physiological adaptations of marine bacterium Pseudomonas stutzeri 273 to mercury stress. Front Microbial 9:682–694CrossRefGoogle Scholar
  163. Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70(8):1500–1509CrossRefGoogle Scholar
  164. Zhu W, Li Z, Li P, Yu B, Lin CJ, Sommar J, Feng X (2018) Re-emission of legacy mercury from soil adjacent to closed point sources of Hg emission. Environ Pollut 242:718–727CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Applied Microbiology, Department of Environmental Science & EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations