A scale-adaptive method for urban rainwater harvesting simulation

Abstract

At a building or dwelling scale, accurate evaluation of the water savings potential from rainwater harvesting (RWH) can be achieved by simulating the performance of the RWH system using a balance equations model. At an urban scale, water savings potential is usually estimated from the balance between the annual rainfall and annual water consumption. This approach has limited accuracy since it assumes an infinite storage capacity and it disregards the variability of the ratio between the water collected and water consumed in each building. This paper presents a methodology to evaluate rainwater harvesting potential at an urban level taking into consideration buildings’ characteristics and consumption pattern. The complexity of the model is balanced with the format and detail of the information available to allow fast and easy implementation with few resources. The proposed methodology is applied to the city of Lisbon, Portugal, located on the Atlantic coast of the Mediterranean climate region. The results demonstrate water savings potential ranging from 16 to 86% depending on the buildings and occupancy characteristics. The spatial variability of the rainfall in the city of Lisbon was found to be negligible for rainwater harvesting potential evaluation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abdulla FA, Al-Shareef AW (2009) Roof rainwater harvesting systems for household water supply in Jordan. Desalination 243:195–207. https://doi.org/10.1016/j.desal.2008.05.013

    CAS  Article  Google Scholar 

  2. Aladenola OO, Adeboye OB (2010) Assessing the potential for rainwater harvesting. Water Resour Manag 24:2129–2137. https://doi.org/10.1007/s11269-009-9542-y

    Article  Google Scholar 

  3. Amado MP, Barroso LM (2013) Sustainable construction: water use in residential buildings in Portugal. Int J Sustain Constr Eng Technol 4:14–22

    Google Scholar 

  4. Amin MT, Kim T-I, Amin MN, Han MY (2013) Effects of catchment, first-flush, storage conditions, and time on microbial quality in rainwater harvesting systems. Water Environ Res 85:2317–2329

    CAS  Article  Google Scholar 

  5. Associação Portuguesa de Distribuição e Drenagem de Águas (2011) Crise reduz consumo de água em Lisboa. http://www.apda.pt/pt/noticia/1123 (accessed 10.28.15)

  6. Basinger M, Montalto F, Lall U (2010) A rainwater harvesting system reliability model based on nonparametric stochastic rainfall generator. J Hydrol 392:105–118. https://doi.org/10.1016/j.jhydrol.2010.07.039

    Article  Google Scholar 

  7. Belmeziti A, Coutard O, de Gouvello B (2013) A new methodology for evaluating potential for potable water savings (PPWS) by using rainwater harvesting at the urban level: the case of the municipality of Colombes (Paris region). Water (Switzerland) 5:312–326. https://doi.org/10.3390/w5010312

    CAS  Article  Google Scholar 

  8. Belmeziti A, Coutard O, de Gouvello B (2014) How much drinking water can be saved by using rainwater harvesting on a large urban area? Application to Paris agglomeration. Water Sci Technol 70(11):1782–1788

    Article  Google Scholar 

  9. Belo-Pereira M, Dutra E, Viterbo P (2011) Evaluation of global precipitation data sets over the Iberian Peninsula. J Geophys Res 116:1–16. https://doi.org/10.1029/2010JD015481

    Article  Google Scholar 

  10. Bocanegra-Martínez A, Ponce-Ortega JM, Nápoles-Rivera F, Serna-González M, Castro-Montoya AJ, El-Halwagi MM (2014) Optimal design of rainwater collecting systems for domestic use into a residential development. Resour Conserv Recycl 84:44–56. https://doi.org/10.1016/j.resconrec.2014.01.001

    Article  Google Scholar 

  11. Câmara Municipal de Lisboa (2012) Juntas de Freguesia. http://www.cm-lisboa.pt/municipio/juntas-de-freguesia (accessed 1.10.15)

  12. Campisano A, Modica C (2012) Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily. Resour Conserv Recycl 63:9–16. https://doi.org/10.1016/j.resconrec.2012.03.007

    Article  Google Scholar 

  13. Campisano A, Modica C (2014) Selecting time scale resolution to evaluate water saving and retention potential of rainwater harvesting tanks. Procedia Eng 70:218–227. https://doi.org/10.1016/j.proeng.2014.02.025

    Article  Google Scholar 

  14. Cheng CL, Liao MC (2009) Regional rainfall level zoning for rainwater harvesting systems in northern Taiwan. Resour Conserv Recycl 53:421–428. https://doi.org/10.1016/j.resconrec.2009.03.006

    Article  Google Scholar 

  15. Domènech L, Saurí D (2011) A comparative appraisal of the use of rainwater harvesting in single and multi-family buildings of the metropolitan area of Barcelona (Spain): social experience, drinking water savings and economic costs. J Clean Prod 19:598–608. https://doi.org/10.1016/j.jclepro.2010.11.010

    Article  Google Scholar 

  16. Environment Agency (2010) Harvesting rainwater for domestic uses: an information guide. Environ Agency Reports 1–32

  17. Eroksuz E, Rahman A (2010) Rainwater tanks in multi-unit buildings: a case study for three Australian cities. Resour Conserv Recycl 54:1449–1452. https://doi.org/10.1016/j.resconrec.2010.06.010

    Article  Google Scholar 

  18. Farreny R, Gabarrell X, Rieradevall J (2011a) Cost-efficiency of rainwater harvesting strategies in dense Mediterranean neighbourhoods. Resour Conserv Recycl 55:686–694. https://doi.org/10.1016/j.resconrec.2011.01.008

    Article  Google Scholar 

  19. Farreny R, Morales-Pinzón T, Guisasola A, Tayà C, Rieradevall J, Gabarrell X (2011b) Roof selection for rainwater harvesting: quantity and quality assessments in Spain. Water Res 45:3245–3254. https://doi.org/10.1016/j.watres.2011.03.036

    CAS  Article  Google Scholar 

  20. Fewkes A (1999) The use of rainwater for WC flushing: the field testing of a collection system. Build Environ 34:765–772. https://doi.org/10.1016/S0360-1323(98)00063-8

    Article  Google Scholar 

  21. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Tank Klein AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212. https://doi.org/10.3354/cr019193

    Article  Google Scholar 

  22. Ghisi E (2006) Potential for potable water savings by using rainwater in the residential sector of Brazil. Build Environ 41:1544–1550. https://doi.org/10.1016/j.buildenv.2005.03.018

    Article  Google Scholar 

  23. Ghisi E, Bressan DL, Martini M (2007) Rainwater tank capacity and potential for potable water savings by using rainwater in the residential sector of southeastern Brazil. Build Environ 42:1654–1666. https://doi.org/10.1016/j.buildenv.2006.02.007

    Article  Google Scholar 

  24. Ghisi E, Montibeller A, Schmidt RW (2006) Potential for potable water savings by using rainwater: an analysis over 62 cities in southern Brazil. Build Environ 41:204–210. https://doi.org/10.1016/j.buildenv.2005.01.014

    Article  Google Scholar 

  25. Imteaz MA, Ahsan A, Naser J, Rahman A (2013) Reliability analysis of rainwater tanks using daily water balance model: variations within a large city. Resour Conserv Recycl 56:80–86. https://doi.org/10.1016/j.resconrec.2011.09.008

    Article  Google Scholar 

  26. Imteaz MA, Paudel U, Ahsan A, Santos C (2015) Climatic and spatial variability of potential rainwater savings for a large coastal city. Resour Conserv Recycl 105:143–147. https://doi.org/10.1016/j.resconrec.2015.10.023

    Article  Google Scholar 

  27. Instituto Nacional de Estatística (2011) 2.02 - Edifícios, segundo o número de pisos, por tipo de edifício e número de alojamentos. http://censos.ine.pt/xportal/xmain?xpid=CENSOS&xpgid=censos_quadros_edif (accessed 11.9.14)

  28. IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  29. Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, Van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453. https://doi.org/10.1002/joc.773

    Article  Google Scholar 

  30. Lange J, Husary S, Gunkel A, Bastian D, Grodek T (2012) Potentials and limits of urban rainwater harvesting in the Middle East. Hydrol Earth Syst Sci 16:715–724. https://doi.org/10.5194/hess-16-715-2012

    Article  Google Scholar 

  31. Lehner B, Döll P, Alcamo J, Henrichs T, Kaspar F (2006) Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Clim Chang 75:273–299. https://doi.org/10.1007/s10584-006-6338-4

    Article  Google Scholar 

  32. Matos C, Teixeira CA, Duarte AALS, Bentes I (2013) Domestic water uses: characterization of daily cycles in the north region of Portugal. Sci Total Environ 458-460:444–450. https://doi.org/10.1016/j.scitotenv.2013.04.018

    CAS  Article  Google Scholar 

  33. Mehrabadi MHR, Saghafian B, Fashi FH (2013) Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate conditions. Resour Conserv Recycl 73:86–93. https://doi.org/10.1016/j.resconrec.2013.01.015

    Article  Google Scholar 

  34. Mitchell VG, McCarthy DT, Deletic A, Fletcher TD (2008) Urban stormwater harvesting - sensitivity of a storage behaviour model. Environ Model Softw 23:782–793. https://doi.org/10.1016/j.envsoft.2007.09.006

    Article  Google Scholar 

  35. Mun JS, Han MY (2012) Design and operational parameters of a rooftop rainwater harvesting system: definition, sensitivity and verification. J Environ Manag 93:147–153. https://doi.org/10.1016/j.jenvman.2011.08.024

    CAS  Article  Google Scholar 

  36. Palla A, Gnecco I, Lanza LG (2011) Non-dimensional design parameters and performance assessment of rainwater harvesting systems. J Hydrol 401:65–76. https://doi.org/10.1016/j.jhydrol.2011.02.009

    Article  Google Scholar 

  37. Palla A, Gnecco I, Lanza LG, La Barbera P (2012) Performance analysis of domestic rainwater harvesting systems under various European climate zones. Resour Conserv Recycl 62:71–80. https://doi.org/10.1016/j.resconrec.2012.02.006

    Article  Google Scholar 

  38. Pordata (2015) Consumo de água distribuída pela rede pública per capita em Portugal. http://www.pordata.pt/Home (accessed 10.28.15)

  39. Rahman A, Keane J, Imteaz MA (2012) Rainwater harvesting in Greater Sydney: water savings, reliability and economic benefits. Resour Conserv Recycl 61:16–21. https://doi.org/10.1016/j.resconrec.2011.12.002

    Article  Google Scholar 

  40. Silva AS, Ghisi E (2016) Uncertainty analysis of daily potable water demand on the performance evaluation of rainwater harvesting systems in residential buildings. J Environ Manag 180:82–93. https://doi.org/10.1016/j.jenvman.2016.05.028

    Article  Google Scholar 

  41. Silva CM, Sousa V, Carvalho NV (2015) Evaluation of rainwater harvesting in Portugal: application to single-family residences. Resour Conserv Recycl 94:21–34. https://doi.org/10.1016/j.resconrec.2014.11.004

    Article  Google Scholar 

  42. Sistema Nacional de Informação de Recursos Hídricos (2003) Relatório do parâmetro Precipitação diária (mm) em SACAVÉM DE CIMA (21C/01UG). http://www.snirh.pt/index.php?idMain=2&idItem=1 (accessed 10.8.14)

  43. UN (2015) World population prospects: the 2015 revision. United Nations http://esa.un.org/unpd/wpp/ (accessed 8.18.15)

  44. UNDP (2006) Human development report 2006. J Govern Inform United Nations Dev Program 28:839–840. https://doi.org/10.1016/S1352-0237(02)00387-8

    Article  Google Scholar 

  45. UNEP (2002) Global Environment Outlook 3. Geo United Nations Environ Program 24:407. https://doi.org/10.2307/2807995

    Article  Google Scholar 

  46. Villarreal EL, Dixon A (2005) Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrköping, Sweden. Build Environ 40:1174–1184. https://doi.org/10.1016/j.buildenv.2004.10.018

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CEris Research Center. VS acknowledges the financial support from IST – Universidade de Lisboa and the Portuguese National Science Foundation (grant SFRH/BSAB/113784/2015) for the sabbatical leave at École Polytechnique Fédérale de Lausanne where part of this work was carried out.

The authors also acknowledge the relevant contribution of the anonymous reviewers, both correcting mistakes in the original manuscript and promoting the discussion of various important aspects related to RWHS in general.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vitor Sousa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lúcio, C., Silva, C.M. & Sousa, V. A scale-adaptive method for urban rainwater harvesting simulation. Environ Sci Pollut Res 27, 4557–4570 (2020). https://doi.org/10.1007/s11356-019-04889-6

Download citation

Keywords

  • Rainwater harvesting systems simulation
  • Accuracy/data requirements balance
  • Urban planning
  • Water savings potential
  • Parametric water savings potential functions