Advertisement

Technologies applicable to the removal of heavy metals from landfill leachate

  • Elizabeth Carvajal-FlórezEmail author
  • Santiago-Alonso Cardona-Gallo
Review Article
  • 103 Downloads

Abstract

This article presents a review of the main physical, chemical, electrochemical, and biological technologies used for treating heavy metals in the wastewater of industrial processes and in synthetic aqueous solutions which could be applied to leachate from landfills. This paper outlines the generalities, operating principles, and modifications made to the technologies described. It discusses and assesses which of these have better removal rates and higher levels of efficiency in minimizing the heavy metal concentrations contained in leachates, such as mercury, chromium, lead, nickel, and copper among others. The first part of the document presents the so-called conventional technologies, such as chemical, physical, and electrochemical treatment. These have been used to treat different wastewater, especially industrial waste, operating adequately from the technical topic, but with high costs and the secondary products’ production. The second part exposes biological treatments tend to be most widely used due to their versatility, effectiveness, and low cost, when compared with traditional technologies. It is important to note that there is no single treatment and that each of the technologies reviewed has different heavy metal decontamination rates. All technologies search to reduce concentrations of heavy metals to values that are safe for the natural resources where they are discharged or disposed, thereby complying with the regulatory limits regulated in each of the regions.

Keywords

Heavy metals Leachate Treatments Landfills Removal rate, removal technologies 

Notes

Acknowledgments

We are grateful to the National University of Colombia’s Medellín Campus and its attached professors.

References

  1. A D, Oka M, Fujii Y et al (2017) Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands. Sci Total Environ 584–585:742–750.  https://doi.org/10.1016/J.SCITOTENV.2017.01.112 CrossRefGoogle Scholar
  2. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257.  https://doi.org/10.1016/j.biortech.2005.12.006 CrossRefGoogle Scholar
  3. Al-Anbari RH, Albaidani J, Alfatlawi SM, Al-Hamdani TA (2008) Removal of heavy metals from industrial water using electro-coagulation technique. In: Twelft International Water Technology ConferenceGoogle Scholar
  4. Aldrich C, Feng D (2000) Removal of heavy metals from wastewater effluents by biosorptive flotation. Miner Eng 13:1129–1138CrossRefGoogle Scholar
  5. Al-Qodah Z (2006) Biosorption of heavy metal ions from aqueous solutions by activated sludge. Desalination 196:164–176.  https://doi.org/10.1016/j.desal.2005.12.012 CrossRefGoogle Scholar
  6. Al-Qodah Z, Mubarak MS (2008) Copper adsorption on chitosan-derived Schiff bases AU - Zalloum, Hiba M. J Macromol Sci A 46:46–57.  https://doi.org/10.1080/10601320802515225 CrossRefGoogle Scholar
  7. Al-Shannag M, Al-Qodah Z, Bani-Melhem K et al (2015) Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance. Chem Eng J 260:749–756CrossRefGoogle Scholar
  8. Amaringo Villa FA (2015) Estudio de la adsorción de una mezcla binaria de colorantes de interés industrial sobre cascarilla de arroz. Universidad Nacional de Colombia Sede MedellínGoogle Scholar
  9. Anitha T, Kumar PS, Kumar KS et al (2015a) Adsorptive removal of Pb(II) ions from polluted water by newly synthesized chitosan–polyacrylonitrile blend: equilibrium, kinetic, mechanism and thermodynamic approach. Process Saf Environ Prot 98:187–197.  https://doi.org/10.1016/j.psep.2015.07.012 CrossRefGoogle Scholar
  10. Anitha T, Senthil Kumar P, Sathish Kumar K (2015b) Binding of Zn(II) ions to chitosan–PVA blend in aqueous environment: adsorption kinetics and equilibrium studies. Environ Prog Sustain Energy 34:15–22.  https://doi.org/10.1002/ep.11943 CrossRefGoogle Scholar
  11. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377.  https://doi.org/10.1016/j.arabjc.2010.07.019 CrossRefGoogle Scholar
  12. Basha CA, Ramanathan K, Rajkumar R, Mahalakshmi M, Kumar PS (2008) Management of chromium plating rinsewater using electrochemical ion exchange. Ind Eng Chem Res 47:2279–2286.  https://doi.org/10.1021/ie070163x CrossRefGoogle Scholar
  13. Bavandpour F, Zou Y, He Y, Saeed T, Sun Y, Sun G (2018) Removal of dissolved metals in wetland columns filled with shell grits and plant biomass. Chem Eng J 331:234–241.  https://doi.org/10.1016/J.CEJ.2017.08.112 CrossRefGoogle Scholar
  14. Březinová T, Vymazal J (2015) Evaluation of heavy metals seasonal accumulation in Phalaris arundinacea in a constructed treatment wetland. Ecol Eng 79:94–99.  https://doi.org/10.1016/j.ecoleng.2015.04.008 CrossRefGoogle Scholar
  15. Bustamante-Alcántara E (2011) Adsorción de metales pesados en resiudos de café modificados químicamente. Universidad Autónoma de Nuevo LeónGoogle Scholar
  16. Cárdenas Sánchez AC (2012) Evaluación del desempeño de humedales contruidos con plantas nativas tropicales para el tratamiento de lixiviados de rellenos sanitarios. Universidad de SevillaGoogle Scholar
  17. Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5:2782–2799.  https://doi.org/10.1016/j.jece.2017.05.029 CrossRefGoogle Scholar
  18. Chao H-P, Chang C-C, Nieva A (2014) Biosorption of heavy metals on Citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column. J Ind Eng Chem 20:3408–3414CrossRefGoogle Scholar
  19. Cheng S, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng 18:317–325.  https://doi.org/10.1016/S0925-8574(01)00091-X CrossRefGoogle Scholar
  20. Chitpong N, Husson SM (2017) High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Sep Purif Technol 179:94–103.  https://doi.org/10.1016/j.seppur.2017.02.009 CrossRefGoogle Scholar
  21. Cortés Sandoval AE (2014) Evaluación del desempeño de humedales construidos subsuperficial de flujo horizontal sembrados con especies nativas tropicales para la eliminación de Cr (VI) y Cd (II) de lixiviado de relleno sanitarioGoogle Scholar
  22. Cubides Guerrero P, Ramírez Franco JH (2014) Adsorción de Cr VI sobre residuos de café. Rev Mutis 4:18–25CrossRefGoogle Scholar
  23. Dávila-Guzmán NE, de Jesús Cerino-Córdova F, Soto-Regalado E et al (2013) Copper biosorption by spent coffee ground: equilibrium, kinetics, and mechanism. CLEAN – Soil, Air, Water 41:557–564.  https://doi.org/10.1002/clen.201200109 CrossRefGoogle Scholar
  24. Arroyave MP del (2004) La lenteja de agua (Lemna minor l.): una planta acuática promisoria. Rev. EIA 33–38Google Scholar
  25. Delgadillo-López AE, González-Ramírez CA, Prieto-García F et al (2011) Fitorremediación una alternativa para eliminar la contaminación. Trop Subtrop Agroecosyst 14:597–612Google Scholar
  26. El Bestawy E, Helmy S, Hussien H et al (2013) Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 3:181–192CrossRefGoogle Scholar
  27. Elabbas S, Ouazzani N, Mandi L, Berrekhis F, Perdicakis M, Pontvianne S, Pons MN, Lapicque F, Leclerc JP (2016) Treatment of highly concentrated tannery wastewater using electrocoagulation: influence of the quality of aluminium used for the electrode. J Hazard Mater 319:69–77.  https://doi.org/10.1016/j.jhazmat.2015.12.067 CrossRefGoogle Scholar
  28. Emamjomeh MM, Sivakumar M (2009) Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J Environ Manag 90:1663–1679.  https://doi.org/10.1016/J.JENVMAN.2008.12.011 CrossRefGoogle Scholar
  29. Encinas Romero MA, Núñez Rodríguez LA, Gómez Álvarez A, del Munive G CT (2015) Eliminación de cromo de efluentes ácidos, mediante adsorción con wollastonita natural. Epistemus 18:18–22Google Scholar
  30. Fan H-L, Zhou S-F, Jiao W-Z et al (2017) Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method. Carbohydr Polym 174:1192–1200.  https://doi.org/10.1016/j.carbpol.2017.07.050 CrossRefGoogle Scholar
  31. Flores-Cano JV, Leyva-Ramos R, Padilla-Ortega E, Mendoza-Barron J (2013) Adsorption of heavy metals on diatomite: mechanism and effect of operating variables. Adsorpt Sci Technol 31:275–291CrossRefGoogle Scholar
  32. Flórez Orjuela Y, Cótes Cuadro A (2006) Bioabsorción de metales pesados por Salvinia natans de los lixiviados del relleno sanitario Combeima IbaguéGoogle Scholar
  33. Gao J, Zhang J, Ma N et al (2015) Cadmium removal capability and growth characteristics of Iris sibirica in subsurface vertical flow constructed wetlands. Ecol Eng 84:443–450.  https://doi.org/10.1016/j.ecoleng.2015.07.024 CrossRefGoogle Scholar
  34. Gerard N, Santhana Krishnan R, Ponnusamy SK et al (2016) Adsorptive potential of dispersible chitosan coated iron-oxide nanocomposites toward the elimination of arsenic from aqueous solution. Process Saf Environ Prot 104:185–195.  https://doi.org/10.1016/j.psep.2016.09.006 CrossRefGoogle Scholar
  35. Ghosh P, Das M, Thakur I (2014) Mammalian cell line-based bioassays for toxicological evaluation of landfill leachate treated by Pseudomonas sp. ISTDF1. Environ Sci Pollut Res 21:8084–8094.  https://doi.org/10.1007/s11356-014-2802-2 CrossRefGoogle Scholar
  36. Gill LW, de Pamela A, Johnston et al (2017) Long term heavy metal removal by a constructed wetland treating rainfall runoff from a motorway. Sci Total Environ 601–602:32–44.  https://doi.org/10.1016/J.SCITOTENV.2017.05.182 CrossRefGoogle Scholar
  37. Gola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M, Ahammad SZ (2016) Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour Technol 218:388–396.  https://doi.org/10.1016/J.BIORTECH.2016.06.096 CrossRefGoogle Scholar
  38. González-García P (2017) Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sust Energ Rev 82:1393–1414.  https://doi.org/10.1016/j.rser.2017.04.117 CrossRefGoogle Scholar
  39. Grisey E, Laffray X, Contoz O, Cavalli E, Mudry J, Aleya L (2012) The bioaccumulation performance of reeds and cattails in a constructed treatment wetland for removal of heavy metals in landfill leachate treatment (Etueffont, France). Water Air Soil Pollut 223:1723–1741CrossRefGoogle Scholar
  40. Gunasundari E, Senthil Kumar P (2017) Adsorption isotherm, kinetics and thermodynamic analysis of Cu(II) ions onto the dried algal biomass (Spirulina platensis). J Ind Eng Chem 56:129–144.  https://doi.org/10.1016/j.jiec.2017.07.005 CrossRefGoogle Scholar
  41. Gutiérrez-Gutiérrez SC, Rosano-Ortega G, Vega-Lebrún C, et al (2013) Ag, Hg and Cr precipitation for recycling derived of hazardous liquid wasteGoogle Scholar
  42. Harinath Y, Reddy DHK, Sharma LS, Seshaiah K (2017) Development of hyperbranched polymer encapsulated magnetic adsorbent (Fe3O4@SiO2–NH2-PAA) and its application for decontamination of heavy metal ions. J Environ Chem Eng 5:4994–5001.  https://doi.org/10.1016/j.jece.2017.09.031 CrossRefGoogle Scholar
  43. He Z, Gao F, Sha T, Hu Y, He C (2009) Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. J Hazard Mater 163:869–873.  https://doi.org/10.1016/j.jhazmat.2008.07.041 CrossRefGoogle Scholar
  44. He W, Zhang Y, Tian R et al (2013) Modeling the purification effects of the constructed Sphagnum wetland on phosphorus and heavy metals in Dajiuhu Wetland Reserve, China. Ecol Model 252:23–31.  https://doi.org/10.1016/j.ecolmodel.2012.09.025 CrossRefGoogle Scholar
  45. Huang H, Cao L, Wan Y, Zhang R, Wang W (2012) Biosorption behavior and mechanism of heavy metals by the fruiting body of jelly fungus (Auricularia polytricha) from aqueous solutions. Appl Microbiol Biotechnol 96:829–840.  https://doi.org/10.1007/s00253-011-3846-6 CrossRefGoogle Scholar
  46. Izquierdo M (2010) Eliminación de metales pesados en aguas mediante bioadsorción. Evaluación de materiales y modelación del proceso. Dep d’Enginyeria Química, Univ València 22–37Google Scholar
  47. Jerez Chaverri JA (2013) Remoción de metales pesados en lixiviados mediante fitorremediaciónGoogle Scholar
  48. Kaveeshwar AR, Ponnusamy SK, Revellame ED et al (2018) Pecan shell based activated carbon for removal of iron(II) from fracking wastewater: adsorption kinetics, isotherm and thermodynamic studies. Process Saf Environ Prot 114:107–122.  https://doi.org/10.1016/j.psep.2017.12.007 CrossRefGoogle Scholar
  49. Kiely G (2007) Environmental engineering. Tata McGraw-Hill EducationGoogle Scholar
  50. Kim BR, Gaines WA, Szafranski MJ, Bernath EF, Miles AM (2002) Removal of heavy metals from automotive wastewater by sulfide precipitation. J Environ Eng 128:612–623CrossRefGoogle Scholar
  51. Kim SU, Cheong YH, Seo DC, Hur JS, Heo JS, Cho JS (2007) Characterisation of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (Bacillus spp.). Water Sci Technol 55:105–111CrossRefGoogle Scholar
  52. Kiruba UP, Kumar PS, Prabhakaran C, Aditya V (2014) Characteristics of thermodynamic, isotherm, kinetic, mechanism and design equations for the analysis of adsorption in Cd(II) ions-surface modified Eucalyptus seeds system. J Taiwan Inst Chem Eng 45:2957–2968.  https://doi.org/10.1016/j.jtice.2014.08.016 CrossRefGoogle Scholar
  53. Kızılkaya B, Türker G, Akgül R, Doğan F (2012) Comparative study of biosorption of heavy metals using living green algae Scenedesmus quadricauda and Neochloris pseudoalveolaris: equilibrium and kinetics. J Dispers Sci Technol 33:410–419.  https://doi.org/10.1080/01932691.2011.567181 CrossRefGoogle Scholar
  54. Kumar PS, Ramalingam S, Sathyaselvabala V, Kirupha SD, Murugesan A, Sivanesan S (2012) Removal of cadmium(II) from aqueous solution by agricultural waste cashew nut shell. Korean J Chem Eng 29:756–768.  https://doi.org/10.1007/s11814-011-0259-2 CrossRefGoogle Scholar
  55. Largitte L, Brudey T, Tant T, Dumesnil PC, Lodewyckx P (2016) Comparison of the adsorption of lead by activated carbons from three lignocellulosic precursors. Microporous Mesoporous Mater 219:265–275CrossRefGoogle Scholar
  56. Leung JYS, Cai Q, Tam NFY (2016) Comparing subsurface flow constructed wetlands with mangrove plants and freshwater wetland plants for removing nutrients and toxic pollutants. Ecol Eng 95:129–137.  https://doi.org/10.1016/j.ecoleng.2016.06.016 CrossRefGoogle Scholar
  57. Li H, Wei M, Min W et al (2016) Removal of heavy metal ions in aqueous solution by exopolysaccharides from Athelia rolfsii. Biocatal Agric Biotechnol 6:28–32.  https://doi.org/10.1016/j.bcab.2016.01.013 CrossRefGoogle Scholar
  58. Liu T, Han X, Wang Y, Yan L, du B, Wei Q, Wei D (2017) Magnetic chitosan/anaerobic granular sludge composite: synthesis, characterization and application in heavy metal ions removal. J Colloid Interface Sci 508:405–414.  https://doi.org/10.1016/J.JCIS.2017.08.067 CrossRefGoogle Scholar
  59. López Trujillo V, Salgado Mendoza P (2004) Estudio de la calidad del lixiviado del relleno sanitario La Esmeralda y su respuesta bajo tratamiento en filtro anaerobio piloto de fllujo ascendenteGoogle Scholar
  60. Ma N, Wang W, Gao J, Chen J (2017) Removal of cadmium in subsurface vertical flow constructed wetlands planted with Iris sibirica in the low-temperature season. Ecol Eng 109:48–56.  https://doi.org/10.1016/j.ecoleng.2017.09.008 CrossRefGoogle Scholar
  61. Martínez IDM, Silva GG, Hurtado SHV (2013) Removal of nickel and cod present in wastewaters from automotive industry by electrocoagulation. Rev EIA 10:13–21Google Scholar
  62. Matouq M, Jildeh N, Qtaishat M, Hindiyeh M, al Syouf MQ (2015) The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J Environ Chem Eng 3:775–784CrossRefGoogle Scholar
  63. Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152.  https://doi.org/10.1080/07388550500248571 CrossRefGoogle Scholar
  64. Meng Q, Chen H, Lin J, Lin Z, Sun J (2017) Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater. J Environ Sci 56:254–262.  https://doi.org/10.1016/j.jes.2016.10.010 CrossRefGoogle Scholar
  65. Minamisawa M, Nakajima S, Minamisawa H, Yoshida S, Takai N (2002) Removal of copper(II) and cadmium(II) in water by use of roasted coffee beans. Nippon Kagaku Kaishi 2002:459–461.  https://doi.org/10.1246/nikkashi.2002.459 CrossRefGoogle Scholar
  66. Minamisawa M, Minamisawa H, Yoshida S, Takai N (2004) Adsorption behavior of heavy metals on biomaterials. J Agric Food Chem 52:5606–5611.  https://doi.org/10.1021/jf0496402 CrossRefGoogle Scholar
  67. Ministry of Environment and Sustainable Development (2012) Heavy metals concentrations at Colombia landfillsGoogle Scholar
  68. Mohammed A, Babatunde AO (2017) Modelling heavy metals transformation in vertical flow constructed wetlands. Ecol Model 354:62–71.  https://doi.org/10.1016/J.ECOLMODEL.2017.03.012 CrossRefGoogle Scholar
  69. Mosquera-Beltrán Y, Lara-Borrero J (2012) Tratamiento de lixiviados mediante humedales artificiales: revisión del estado del arte. Reflexión Otro¿ Cuál? _ 7:73–99Google Scholar
  70. Moulay S, Bensacia N, Garin F et al (2014) Synthesis of polyacrylamide-bound hydroquinone via a homolytic pathway: application to the removal of heavy metals. Comptes Rendus Chim 17:849–859.  https://doi.org/10.1016/j.crci.2014.03.011 CrossRefGoogle Scholar
  71. Nájera JBP, Tabche LM, Mueller M (1997) Estudio sobre el tratamiento de aguas residuales industriales altamente concentradas en metales pesados bajo aglomeración esférica. J Mex Chem Soc 41:51–56Google Scholar
  72. Nancharaiah YV, Venkata Mohan S, Lens PNL (2015) Metals removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 195:102–114.  https://doi.org/10.1016/j.biortech.2015.06.058 CrossRefGoogle Scholar
  73. Nazari AM, Cox PW, Waters KE (2015) Biosorptive flotation of copper ions from dilute solution using BSA-coated bubbles. Miner Eng 75:140–145.  https://doi.org/10.1016/J.MINENG.2014.07.023 CrossRefGoogle Scholar
  74. Neeraj G, Krishnan S, Senthil Kumar P et al (2016) Performance study on sequestration of copper ions from contaminated water using newly synthesized high effective chitosan coated magnetic nanoparticles. J Mol Liq 214:335–346.  https://doi.org/10.1016/j.molliq.2015.11.051 CrossRefGoogle Scholar
  75. Nemati M, Hosseini SM, Shabanian M (2017) Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal. J Hazard Mater 337:90–104.  https://doi.org/10.1016/j.jhazmat.2017.04.074 CrossRefGoogle Scholar
  76. Nithya K, Sathish A, Senthil Kumar P, Ramachandran T (2018) Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni(II) ions. J Ind Eng Chem 59:230–241.  https://doi.org/10.1016/j.jiec.2017.10.028 CrossRefGoogle Scholar
  77. Novelo RIM, Hernández EM, Franco CQ et al (2002) Tratamiento de lixiviados con carbón activado. Ing Rev Académica 3:19–27Google Scholar
  78. Ntimbani RN, Simate GS, Ndlovu S (2015) Removal of copper ions from dilute synthetic solution using staple ion exchange fibres: equilibrium and kinetic studies. J Environ Chem Eng 3:1258–1266.  https://doi.org/10.1016/j.jece.2015.02.010 CrossRefGoogle Scholar
  79. Pacheco Tanaka ME, Pimentel Frisancho JP, Roque Villanueva WF (2010) Cinética de la bioadsorción de iones cadmio (II) y plomo (II) de soluciones acuosas por biomasa residual de café (Coffea arabica L.). Rev Soc Quím Perú 76:279–292Google Scholar
  80. Pal P, Banat F (2014) Comparison of heavy metal ions removal from industrial lean amine solvent using ion exchange resins and sand coated with chitosan. J Nat Gas Sci Eng 18:227–236.  https://doi.org/10.1016/j.jngse.2014.02.015 CrossRefGoogle Scholar
  81. Pap S, Šolević Knudsen T, Radonić J, Maletić S, Igić SM, Turk Sekulić M (2017) Utilization of fruit processing industry waste as green activated carbon for the treatment of heavy metals and chlorophenols contaminated water. J Clean Prod 162:958–972.  https://doi.org/10.1016/j.jclepro.2017.06.083 CrossRefGoogle Scholar
  82. Papaevangelou VA, Gikas GD, Tsihrintzis VA (2017) Chromium removal from wastewater using HSF and VF pilot-scale constructed wetlands: overall performance, and fate and distribution of this element within the wetland environment. Chemosphere 168:716–730.  https://doi.org/10.1016/j.chemosphere.2016.11.002 CrossRefGoogle Scholar
  83. Patil DS, Chavan SM, Oubagaranadin JUK (2016) A review of technologies for manganese removal from wastewaters. J Environ Chem Eng 4:468–487.  https://doi.org/10.1016/J.JECE.2015.11.028 CrossRefGoogle Scholar
  84. Pavlovska G, Čundeva K, Stafilov T, Zendelovska D (2003) Flotation method for selective separation of silver, cadmium, chromium, manganese, thallium, and zinc from aragonite before atomic absorption spectrometric determination. Sep Sci Technol 38:1111–1124CrossRefGoogle Scholar
  85. Polat H, Erdogan D (2007) Heavy metal removal from waste waters by ion flotation. J Hazard Mater 148:267–273CrossRefGoogle Scholar
  86. Prica M, Adamovic S, Dalmacija B, Rajic L, Trickovic J, Rapajic S, Becelic-Tomin M (2015) The electrocoagulation/flotation study: the removal of heavy metals from the waste fountain solution. Process Saf Environ Prot 94:262–273CrossRefGoogle Scholar
  87. Ramesh ST, Gandhimathi R, Hamoneth Joesun J, Nidheesh PV (2013) Novel agricultural waste adsorbent, Cyperus rotundus, for removal of heavy metal mixtures from aqueous solutions. Environ Eng Sci 30:74–81.  https://doi.org/10.1089/ees.2012.0192 CrossRefGoogle Scholar
  88. Ramos K (2008) Tratamiento de desechos líquidos tóxicos de una industria de recubrimiento metálico por precipitación e intercambio iónico. Universidad de los AndesGoogle Scholar
  89. Rezania S, Ponraj M, Talaiekhozani A et al (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manag 163:125–133.  https://doi.org/10.1016/j.jenvman.2015.08.018 CrossRefGoogle Scholar
  90. Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599.  https://doi.org/10.1016/j.jhazmat.2016.07.053 CrossRefGoogle Scholar
  91. Ribeiro B, Paim T, Rocha S (2008) Utilización de hidróxido de magnesio en la precipitación de metales pesados. Rev la Fac Ing 22:26–32Google Scholar
  92. Richards RG, Mullins BJ (2013) Using microalgae for combined lipid production and heavy metal removal from leachate. Ecol Model 249:59–67.  https://doi.org/10.1016/j.ecolmodel.2012.07.004 CrossRefGoogle Scholar
  93. Ríos Cardona JN (2005) Remoción de amonio y de metales pesados de los lixiviados del relleno sanitario“ La Esmeralda” de la ciudad de Manizales por electrocoagulaciónGoogle Scholar
  94. Rios Reyes C, Appasamy D, Roberts C (2011) An integrated remediation system using synthetic and natural zeolites for treatment of wastewater and contaminated sediments. Dyna 78:125–134Google Scholar
  95. Sajid M, Khaled Nazal M, Ihsanullah et al (2018) Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: a critical review. Sep Purif Technol 191:400–423.  https://doi.org/10.1016/j.seppur.2017.09.011 CrossRefGoogle Scholar
  96. Salem IA, Salem MA, El-Ghobashy MA (2017) The dual role of ZnO nanoparticles for efficient capture of heavy metals and acid blue 92 from water. J Mol Liq 248:527–538.  https://doi.org/10.1016/j.molliq.2017.10.060 CrossRefGoogle Scholar
  97. Santander M, Valderrama L (2015) Dissolved air flotation of arsenic adsorbent particles. Ing e Investig 35:36–42CrossRefGoogle Scholar
  98. Santander M, Tapia P, Pávez O, Valderrama L, Guzmán D (2009) Remoción de partículas adsorbentes de iones cobre por flotación Jet. Rev Metal 45:365–374CrossRefGoogle Scholar
  99. Saravanan A, Kumar PS, Renita AA (2018) Hybrid synthesis of novel material through acid modification followed ultrasonication to improve adsorption capacity for zinc removal. J Clean Prod 172:92–105.  https://doi.org/10.1016/j.jclepro.2017.10.109 CrossRefGoogle Scholar
  100. Selim KA, El-Tawil RS, Rostom M (2017) Utilization of surface modified phyllosilicate mineral for heavy metals removal from aqueous solutions. Egypt J Pet 27:393–401.  https://doi.org/10.1016/j.ejpe.2017.07.003 CrossRefGoogle Scholar
  101. SenthilKumar P, Ramalingam S, Abhinaya RV, Kirupha SD, Vidhyadevi T, Sivanesan S (2012) Adsorption equilibrium, thermodynamics, kinetics, mechanism and process design of zinc(II) ions onto cashew nut shell. Can J Chem Eng 90:973–982.  https://doi.org/10.1002/cjce.20588 CrossRefGoogle Scholar
  102. Shahbazi A, Younesi H, Badiei A (2011) Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chem Eng J 168:505–518.  https://doi.org/10.1016/j.cej.2010.11.053 CrossRefGoogle Scholar
  103. Shen C, Chen C, Wen T, Zhao Z, Wang X, Xu A (2015) Superior adsorption capacity of gC 3 N 4 for heavy metal ions from aqueous solutions. J Colloid Interface Sci 456:7–14CrossRefGoogle Scholar
  104. Sinha V, Manikandan NA, Pakshirajan K, Chaturvedi R (2017) Continuous removal of Cr(VI) from wastewater by phytoextraction using Tradescantia pallida plant based vertical subsurface flow constructed wetland system. Int Biodeterior Biodegrad 119:96–103.  https://doi.org/10.1016/j.ibiod.2016.10.003 CrossRefGoogle Scholar
  105. Song X, Yan D, Liu Z et al (2011) Performance of laboratory-scale constructed wetlands coupled with micro-electric field for heavy metal-contaminating wastewater treatment. Ecol Eng 37:2061–2065.  https://doi.org/10.1016/j.ecoleng.2011.08.019 CrossRefGoogle Scholar
  106. Soto Regalado E, Lozano Ramírez T, Castillo B et al (2004) Remoción de metales pesados en aguas residuales mediante agentes químicos. Ingenierías 7:46–51Google Scholar
  107. Soto E, Miranda R d C, Sosa CA, Loredo JA (2006) Optimización del proceso de remoción de metales pesados de agua residual de la industria galvánica por precipitación química. Inf Tecnológica 17:33–42Google Scholar
  108. Sriharsha DV, Lokesh Kumar R, Savitha J (2017) Immobilized fungi on Luffa cylindrica: an effective biosorbent for the removal of lead. J Taiwan Inst Chem Eng 80:589–595.  https://doi.org/10.1016/j.jtice.2017.08.032 CrossRefGoogle Scholar
  109. Suazo-Madrid EA, Morales-Barrera L, Cristiani-Urbina M del C, Cristiani-Urbina E (2010) EFECTO DEL pH SOBRE LA BIOSORCIÓN DE NÍQUEL(II) POR Saccharomyces cerevisiae var. ellipsoideus. (Spanish). Eff pH NICKEL(II) BIOSORPTION BY Saccharomyces cerevisiae var ellipsoideus 41:1–12Google Scholar
  110. Taseidifar M, Makavipour F, Pashley RM, Rahman AFMM (2017) Removal of heavy metal ions from water using ion flotation. Environ Technol Innov 8:182–190.  https://doi.org/10.1016/j.eti.2017.07.002 CrossRefGoogle Scholar
  111. Tavakoli O, Goodarzi V, Saeb MR et al (2017) Competitive removal of heavy metal ions from squid oil under isothermal condition by CR11 chelate ion exchanger. J Hazard Mater 334:256–266.  https://doi.org/10.1016/j.jhazmat.2017.04.023 CrossRefGoogle Scholar
  112. Tessele F, Misra M, Rubio J (1998) Removal of Hg, As and Se ions from gold cyanide leach solutions by dissolved air flotation. Miner Eng 11:535–543.  https://doi.org/10.1016/S0892-6875(98)00035-1 CrossRefGoogle Scholar
  113. Tromp K, Lima AT, Barendregt A, Verhoeven JTA (2012) Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing. J Hazard Mater 203:290–298.  https://doi.org/10.1016/j.jhazmat.2011.12.024 CrossRefGoogle Scholar
  114. Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462.  https://doi.org/10.1016/j.cej.2016.09.029 CrossRefGoogle Scholar
  115. Vásquez TGP, Botero AEC, de Mesquita LMS, Torem ML (2007) Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain. Miner Eng 20:939–944CrossRefGoogle Scholar
  116. Velásquez J. J, Quintana G, Gómez C, Echavarría Y (2008) Adsorción de NI(II) en carbón activado de cascarilla de café. Rev Investig Apl 2Google Scholar
  117. Volesky B (2007) Biosorption and me. Water Res 41:4017–4029CrossRefGoogle Scholar
  118. Volesky B, Naja G (2007) Biosorption technology: starting up an enterprise. Int J Technol Transf Commer 6:196–211.  https://doi.org/10.1504/IJTTC.2007.017806 CrossRefGoogle Scholar
  119. Vymazal J, Březinová T (2016) Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: a review. Chem Eng J 290:232–242CrossRefGoogle Scholar
  120. Wangb Q, Fenglian F (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418.  https://doi.org/10.1016/J.JENVMAN.2010.11.011 CrossRefGoogle Scholar
  121. Wu M, Liang J, Tang J, Li G, Shan S, Guo Z, Deng L (2017) Decontamination of multiple heavy metals-containing effluents through microbial biotechnology. J Hazard Mater 337:189–197.  https://doi.org/10.1016/j.jhazmat.2017.05.006 CrossRefGoogle Scholar
  122. Xu L, Cao G, Xu X et al (2017) Simultaneous removal of cadmium, zinc and manganese using electrocoagulation: influence of operating parameters and electrolyte nature. J Environ Manag 204:394–403.  https://doi.org/10.1016/j.jenvman.2017.09.020 CrossRefGoogle Scholar
  123. Yagnentkovsky N (2011) Aplicación de técnicas de biorremediación para el tratamiento de residuos industriales con alto contenido de metales pesados. Universidad Nacional de La Plata UNLPGoogle Scholar
  124. Yalcin E, Cavusoglu K, Maras M, Biyikoglu M (2008) Biosorption of lead(II) and copper(II) metal ions on Cladophora glomerata (L.) Kutz. (Chlorophyta) algae: effect of algal surface modification. Acta Chim Slov 55:228–232Google Scholar
  125. Yeh TY, Chou CC, Pan CT (2009) Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations. Desalination 249:368–373.  https://doi.org/10.1016/j.desal.2008.11.025 CrossRefGoogle Scholar
  126. Yu X-Z, Feng Y-X, Liang Y-P (2016) Kinetics of phyto-accumulation of hexavalent and trivalent chromium in rice seedlings. Int Biodeterior Biodegrad 128:72–77.  https://doi.org/10.1016/j.ibiod.2016.09.003 CrossRefGoogle Scholar
  127. Zeng X, Wang Z, Ji Z, Wei S (2015) A new montmorillonite/humic acid complex prepared in alkaline condition to remove cadmium in waste water. Pol J Environ Stud 24:817–821Google Scholar
  128. Zewail TM, Yousef NS (2015) Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed. Alex Eng J 54:83–90.  https://doi.org/10.1016/j.aej.2014.11.008 CrossRefGoogle Scholar
  129. Zhang Y-J, Ou J-L, Duan Z-K, Xing ZJ, Wang Y (2015) Adsorption of Cr (VI) on bamboo bark-based activated carbon in the absence and presence of humic acid. Colloids Surf A Physicochem Eng Asp 481:108–116CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de MinasUniversidad Nacional de ColombiaMedellínColombia

Personalised recommendations