Advertisement

Environmental Science and Pollution Research

, Volume 26, Issue 16, pp 15816–15827 | Cite as

Effect of acute gold nanorods on reproductive function in male albino rats: histological, morphometric, hormonal, and redox balance parameters

  • Arwa A. HassanEmail author
  • Ahmed Sabry S. AbdoonEmail author
  • Sawsan M. Elsheikh
  • Mohamed H. Khairy
  • Amina A. Gamaleldin
  • Sameh M. Elnabtity
Research Article
  • 96 Downloads

Abstract

In this study, we investigated the effect of acute administration of gold nanorods (AuNRs) on testicular function, sexual hormones, and oxidative stress parameters in male albino rats. Forty mature male albino rats were divided into two equal groups (n = 20/each). The first group received 1 ml saline solution intraperitoneally (i.p.). The second group received single i.p. injection of 75 μg 50 nm AuNRs/kg/bwt. Five rats from each group were sacrificed on days 1, 3, 7, and 14 post treatment and blood samples were collected for hormonal and biochemical analysis. Testes were collected from each group at each time point for histopathology, morphometric, and transmission electron microscope analyses of testis and epididymis. Results indicated that i.p. injection of AuNRs did not produce any histopathological changes. Morphometric analysis of testicular samples revealed that the height of lining epithelium was significantly (P < 0.05) higher in AuNR group on days 3 and 14 post treatment, and the minor axis of seminiferous tubules was higher (P < 0.05) in AuNR-injected rats than in control group. For the epididymis, the number of spermatozoa was significantly (P < 0.05) higher on days 7 and 14 after AuNR injection when compared with control rats. AuNRs were not detected by TEM at all time points of the experiment. Serum analysis demonstrated that total and free testosterone values significantly (P < 0.05) increased on days 1, 3, 7, and 14 post AuNR injection. LH was higher (P < 0.05) in AuNRs-injected rats on days 3, 7, and 14 post injection, while FSH values were higher (P < 0.05) in AuNR group on days 3 and 14. Malondialdehyde significantly (P < 0.05) decreased on days 3, 7, and 14 in AuNR group, while catalase, glutathione peroxidase, and superoxide dismutase values were significantly (P < 0.05) elevated on days 3, 7, and 14 in AuNRs-injected rats compared with control group. In conclusion, intraperitoneal injection of 50 nm AuNRs is safe on the reproductive function and has an antioxidant action.

Keywords

50 nm AuNRs Acute study Histopathological examination Transmission electron microscope Sexual hormone Oxidative stress parameters 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support provide by Misr El-Kheir Foundation to conduct this work (Proj ID: LGA 03 15 0032, entitled Applications of photothermal therapy using gold nanoparticles in cancer).

Compliance with ethical standards

Ethics approval

All the procedures performed in the current study were in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996) and approved by ZU-IACUC (2/F/27/2018).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdelhalim MA (2013) Uptake of gold nanoparticles in several rat organs after intraperitoneal administration in vivo: a fluorescence study. Biomed Res Int 353695Google Scholar
  2. Abdoon AS, Al-Ashkar EA, Shabaka A, Kandil OM, Eisa WH, Shaban AM, Khaled HM, El Ashkar MR, El Shaer M, Shaalan AH, El Sayed MA (2015) Normal pregnancy and lactation in a cat after treatment of mammary gland tumor when using photothermal therapy with gold nanorods: a case report. J Nanomed Nanotechnol 6(5):1Google Scholar
  3. Abdoon AS, Al-Ashkar EA, Kandil OM, Shaban AM, Khaled HM, El Sayed MA, El Shaer MM, Shaalan AH, Eisa WH, Eldin AA, Hussein HA, El Ashkar MR, Ali MR, Shabaka AA (2016) Efficacy and toxicity of plasmonic photothermal therapy (PPTT) using gold nanorods (GNRs) against mammary tumors in dogs and cats. Nanomedicine 12(8):2291–2297.  https://doi.org/10.1016/j.nano.2016.07.005 CrossRefGoogle Scholar
  4. Adebayo OA, Akinloye O, Adaramoye OA (2018) Cerium oxide nanoparticle elicits oxidative stress, endocrine imbalance and lowers sperm characteristics in testes of balb/c mice. Andrologia 50Google Scholar
  5. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  6. Ahotupa M, Huhtaniemi I (1992) Impaired detoxification of reactive oxygen and consequent oxidative stress in experimentally cryptorchid rat testis. Biol Reprod 46(6):1114–1118CrossRefGoogle Scholar
  7. Balasubramanian SK, Jittiwat J, Manikandan J, Ong CN, Yu LE, Ong WY (2010) Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31:2034–2042CrossRefGoogle Scholar
  8. Barathmanikanth S, Kalishwaralal K, Sriram M, Pandian SBR, Youn HS, Eom SH, Gurunathan S (2010) Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnol 8:16CrossRefGoogle Scholar
  9. Behnammorshedi M, Nazem H, Moghadam MS (2015) The effect of gold nanoparticle on luteinizing hormone, follicle stimulating hormone, testosterone and testis in male rat. Biomed Res 26(2)Google Scholar
  10. Chen J, Wang H, Long W, Shen X, Wu D, Song SS, Sun YM, Liu PX, Fan S, Fan F et al (2013) Sex differences in the toxicity of polyethylene glycol-coated gold nanoparticles in mice. Int J Nanomedicine 8:2409–2419.  https://doi.org/10.2147/IJN.S46376 Google Scholar
  11. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919.  https://doi.org/10.1016/j.biomaterials.2007.12.037 CrossRefGoogle Scholar
  12. El-Sayed MA, Shabaka AA, El-Shabrawy OA, Yassin NA, Mahmoud SS, El-Shenawy SM, Al-Ashqar E, Eisa WH, Farag NM, El-Shaer MA, Salah N, Al-Abd AM (2013) Tissue distribution and efficacy of gold nanorods coupled with laser induced photoplasmonic therapy in ehrlich carcinoma solid tumor model. PLoS One 8(10):e76207.  https://doi.org/10.1371/journal.pone.0076207 CrossRefGoogle Scholar
  13. Ema M, Kobayashi N, Naya M, Hanai S, Nakanishi J (2010) Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol 30(3):343–352CrossRefGoogle Scholar
  14. Ferreira GK, Cardoso E, Vuolo FS, Galant LS, Michels M, Gonçalves CL, Rezin GT, Dal-Pizzol F, Benavides R, Alonso-Núñez G, Andrade VM, Streck EL, da Silva Paula MM (2017) Effect of acute and long-term administration of gold nanoparticles on biochemical parameters in rat brain. Mater Sci Eng C Mater Biol Appl 79:748–755CrossRefGoogle Scholar
  15. Garcia TX, Costa GM, Franca LR, Hofmann MC (2014) Sub-acute intravenous administration of silver nanoparticles in male mice alters Leydig cell function and testosterone levels. Reprod Toxicol 45:59–70CrossRefGoogle Scholar
  16. Iavicoli I, Fontana L, Leso V, Antonio Bergamaschi A (2013) The effects of nanomaterials as endocrine disruptors. Int J Mol Sci 14(8):16732–16801CrossRefGoogle Scholar
  17. Lan ZW, Yang X (2012) Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood-testis barrier. Nano Med 7(4):579–596Google Scholar
  18. Leclerc L, Klein JP, Forest V, Boudard D, Martini M, Pourchez J, Blanchin MG, Cottier M (2015) Testicular biodistribution of silica-gold nanoparticles after intramuscular injection in mice. Biomed Microdevices 17:66CrossRefGoogle Scholar
  19. Lee JK, Kim TS, Bae JY, Jung AY, Lee SM, Seok JH, Roh HS, Song CW, Choi MJ, Jeong J, Chung BH, Lee YG, Jeong J, Cho WS (2015) Organ-specific distribution of gold nanoparticles by their surface functionalization. J Appl Toxicol 35:573–580CrossRefGoogle Scholar
  20. Li WQ, Wang F, Liu ZM, Wang YC, Wang J, Sun F (2013) Gold nanoparticles elevate plasma testosterone levels in male mice without affecting fertility. Small 27:1708–1714CrossRefGoogle Scholar
  21. Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, Yu L, Liang XJ (2011) Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5:8629–8639.  https://doi.org/10.1021/nn202155y CrossRefGoogle Scholar
  22. Morishita Y, Yoshioka Y, Satoh H, Nojiri N, Nagano K, Abe Y, Kamada H, Tsunoda S, Nabeshi H, Yoshikawa T, Tsutsumi Y (2012) Distribution and histologic effects of intravenously administered amorphous nanosilica particles in the testes of mice. Biochem Biophys Res Commun 420:297–301CrossRefGoogle Scholar
  23. Nazari M, Talebi AR, Hosseini Sharifabad M, Abbasi A, Khoradmehr A, Danafar AH (2016) Acute and chronic effects of gold nanoparticles on sperm parameters and chromatin structure in mice. Int J Reprod Biomed (Yazd) 14(10):637–642CrossRefGoogle Scholar
  24. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold Nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRefGoogle Scholar
  25. Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854CrossRefGoogle Scholar
  26. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  27. Ong C, Lee QY, Cai Y, Liu X, Ding J, Yung LYL, Bay BH, Baeg GH (2016) Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Sci Rep 6:20632.  https://doi.org/10.1038/srep20632 CrossRefGoogle Scholar
  28. Osinubi AA, Noronha CC, Okanlawon AO (2005) Morphlogical and stereological assessment of the effect of long term administration of quinine on the morphology of rat testis. West Afr J Med 24(3):200–205Google Scholar
  29. Pascual P, Martinez-Lara E, Barcena JA, Lopez-Barea J, Toribio F (1992) Direct assay of glutathione peroxidase activity using high-performance capillary electrophoresis. J Chromatogr 581:49–56CrossRefGoogle Scholar
  30. Pawar K, Kaul G (2014) Toxicity of titanium oxide nanoparticles causes functionality and DNA damage in buffalo (Bubalus bubalis) sperm in vitro. Toxicol Ind Health 30:520–533CrossRefGoogle Scholar
  31. Preaubert L, Courbiere B, Achard V, Tassistro V, Greco F, Orsiere T, Bottero JY, Rose J, Auffan M, Perrin J (2015) Cerium dioxide nanoparticles affect in vitro fertilization in mice. Nanotoxicology 22:1–7CrossRefGoogle Scholar
  32. Seethalakshmi L, Flores C, Carboni AA, Bala R, Diamond DA, Menon M (1990) Cyclosporine: its effects on testicular function and fertility in the prepubertal rat. J Androl 11:17–24Google Scholar
  33. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21(23):10644–10654CrossRefGoogle Scholar
  34. Suvarna K, Layton SC, Bancroft JD (2013) Bancroft's theory and practice of histological techniques, 7th ednGoogle Scholar
  35. Wang X, Shao M, Zhang S, Lui X (2013) Biomedical applications of gold nanorod-based multifunctional nano-carriers. J Nanopart Res 15(1892):1–16Google Scholar
  36. Wennerberg A, Jimbo R, Allard S, Skarnemark G, Andersson M (2011) In vivo stability of hydroxyapatite nanoparticles coated on titanium implant surfaces. Int J Oral Maxillofac Implants 26:1161–1166Google Scholar
  37. Xu Y, Wang N, Yu Y, Li Y, Li YB, Yu YB, Zhou XQ, Sun ZW (2014) Exposure to silica nanoparticles causes reversible damage of the spermatogenic process in mice. PLoS One 9:e101572CrossRefGoogle Scholar
  38. Yakimovich NO, Ezhevskii AA, Guseinov DV, Smirnova LA, Gracheva TA, Klychkov KS (2008) Antioxidant properties of gold nanoparticles studied byESR spectroscopy. Russ Chem Bull 57(3):520–523CrossRefGoogle Scholar
  39. Yoisungnern T, Choi YJ, Woong Han J, Kang MH, Das J, Gurunathan S, Kwon DN, Cho SG, Park C, Kyung Chang W, Chang BS, Parnpai R, Kim JH (2015) Internalization of silver nanoparticles into mouse spermatozoa results in poor fertilization and compromised embryo development. Sci Rep 5:11170.  https://doi.org/10.1038/srep11170 CrossRefGoogle Scholar
  40. Yoshida S, Hiyoshi K, Ichinose T, Takano H, Oshio S, Sugawara I, Takeda K, Shibamoto T (2009) Effect of nanoparticles on the male reproductive system of mice. Int J Androl 32:337–342.  https://doi.org/10.1111/j.1365-2605.2007.00865 CrossRefGoogle Scholar
  41. Zakhidov ST, Pavliuchenkova SM, Marshak TL, Rudoĭ VM, Dement'eva OV, Zelenina IA, Skuridin SG, Makarov AA, Khokhlov AN, Evdokimov IM (2012) Effect of gold nanoparticles on mouse spermatogenesis. Izv Akad Nauk Ser Biol 3:279–287 RussianGoogle Scholar
  42. Zhang X, Wu Y, Wu D, Wang Y, Chang J, Zhai Z, Meng A, Liu PX, Zhang LA, Fan FY (2010) Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomedicine 5:771–781CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Arwa A. Hassan
    • 1
    Email author
  • Ahmed Sabry S. Abdoon
    • 2
    Email author
  • Sawsan M. Elsheikh
    • 3
  • Mohamed H. Khairy
    • 3
  • Amina A. Gamaleldin
    • 4
  • Sameh M. Elnabtity
    • 3
  1. 1.Department of Pharmacology and Toxicology, Faculty of Pharmacy &Pharmaceutical IndustriesSinai UniversityEl ArishEgypt
  2. 2.Department of Animal Reproduction, Veterinary Research DivisionNational Research CenterCairoEgypt
  3. 3.Department of Pharmacology, Faculty of Veterinary medicineZagazig UniversityZagazigEgypt
  4. 4.Department of Pathology, Medical Research DivisionNational Research CentreCairoEgypt

Personalised recommendations