Advertisement

Theoretical framework for the estimation of H2S concentration in biogas produced from complex sulfur-rich substrates

  • Iván Moreno-Andrade
  • Gloria Moreno
  • Guillermo QuijanoEmail author
Sediment Research and Management

Abstract

A theoretical framework was developed and validated for the estimation of H2S concentration in biogas produced from complex sulfur-rich effluents. The modeling approach was based on easy-to-obtain data such as biological biogas potential (BBP), chemical oxygen demand, and total sulfur content. Considering the few data required, the model fitted well the experimental H2S concentrations obtained from BBP tests and continuous bioreactors reported in the literature. The model supported a correlation coefficient (R2) of 0.989 over the experimental data, obtaining average and maximum errors of ~ 25 and ~ 35%, respectively. The theoretical framework yielded good estimations for a wide range of experimental H2S concentrations (0.2 to 4.5% in biogas). This modeling approach is, therefore, a useful tool towards anticipating the H2S concentration in biogas produced from sulfur-rich substrates and deciding whether the installation of a desulfurization technology is required or not.

Keywords

Biogas H2S concentration Industrial effluents Model validation Sulfur-rich substrates 

Nomenclature

BBP

Biological biogas potential (Lbiogas gCODremoved−1)

COD

Chemical oxygen demand (g L−1)

CW

Cheese whey

H

Dimensionless Henry’s law constant (−)

Dimensionless Henry’s law constant at pH ≈ 7 and 298.15 K (−)

H2S%

Total H2S concentration in the system (%)

\( {\mathrm{H}}_2{\mathrm{S}}_{\%}^{\mathrm{Gas}} \)

H2S concentration in biogas (%)

\( {\mathrm{H}}_2{\mathrm{S}}_{\%}^{\mathrm{Liq}} \)

H2S concentration in liquid phase (%)

MW

Sulfur molar weight (32.07 g mol−1)

OFMSW

Organic fraction of municipal solid waste

Scons

Sulfur-to-COD consumption ratio (gSconsumed gCODremoved−1)

T

Temperature (K)

Reference temperature (298.15 K)

VGas

Gas phase volume in the BBP bottle (L)

VLiq

Liquid phase volume in the BBP bottle (L)

VTot

Total volume of the BBP bottle (L)

WV

Wine vinasse

Notes

Funding information

The technical support of Jaime Pérez Trevilla and Ángel Avizua Hernández is acknowledged. This study was financially supported by DGAPA-UNAM through the PAPIIT project IA100719 and by Fondo de Sustentabilidad Energética SENER– CONACYT (Mexico) through the project 247006 Gaseous Biofuels Cluster.

References

  1. Aita BC, Mayer FD, Muratt DT, Brondani M, Pujol SB, Denardi LB, Hoffmann R, da Silveira DD (2016) Biofiltration of H2S-rich biogas using Acidithiobacillus thiooxidans. Clean Techn Environ Policy 18:689–703.  https://doi.org/10.1007/s10098-015-1043-5 CrossRefGoogle Scholar
  2. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P, van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934.  https://doi.org/10.2166/wst.2009.040 CrossRefGoogle Scholar
  3. APHA (2005) Standard methods for examination of water and wastewater, 21st edn. APHA, AWWA, WPCR, New YorkGoogle Scholar
  4. Barrera EL, Spanjers H, Dewulf J, Romero O, Rosa E (2013) The sulfur chain in biogas production from sulfate-rich liquid substrates: a review on dynamic modeling with vinasse as model substrate. J Chem Technol Biotechnol 88:1405–1420.  https://doi.org/10.1002/jctb.4071 CrossRefGoogle Scholar
  5. Barrera EL, Spanjers H, Romero O, Rosa E, Dewulf J (2014) Characterization of the sulfate reduction process in the anaerobic digestion of a very high strength and sulfate rich vinasse. Chem Eng J 248:383–393.  https://doi.org/10.1016/j.cej.2014.03.057 CrossRefGoogle Scholar
  6. Belmabkhout Y, De Weireld G, Sayari A (2009) Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir 25:13275–13278.  https://doi.org/10.1021/la903238y CrossRefGoogle Scholar
  7. Boulyga SF, Heilmann J, Prohaska T, Heumann KG (2007) Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples. Anal Bioanal Chem 389:697–706.  https://doi.org/10.1007/s00216-007-1485-7 CrossRefGoogle Scholar
  8. Campuzano R, González-Martínez S (2016) Characteristics of the organic fraction of municipal solid waste and methane production: a review. Waste Manag 54:3–12.  https://doi.org/10.1016/J.WASMAN.2016.05.016 CrossRefGoogle Scholar
  9. Chaiprapat S, Wongchana S, Loykulnant S, Kongkaew C, Charnnok B (2015) Evaluating sulfuric acid reduction, substitution, and recovery to improve environmental performance and biogas productivity in rubber latex industry. Process Saf Environ Prot 94:420–429.  https://doi.org/10.1016/j.psep.2014.10.002 CrossRefGoogle Scholar
  10. Demirer GN, Duran M, Güven E, Ugurlu Ö, Tezel U, Ergüder TH (2000) Anaerobic treatability and biogas production potential studies of different agro-industrial wastewaters in Turkey. Biodegradation 11:401–405.  https://doi.org/10.1023/A:1011659705369 CrossRefGoogle Scholar
  11. Díaz I, Figueroa-González I, Miguel JA, Bonilla-Morte L, Quijano G (2016) Enhancing the biomethane potential of liquid dairy cow manure by addition of solid manure fractions. Biotechnol Lett 38:2097–2102.  https://doi.org/10.1007/s10529-016-2198-9 CrossRefGoogle Scholar
  12. Dubois L, Thomas D (2010) Comparison of various alkaline solutions for H2S/CO2-selective absorption applied to biogas purification. Chem Eng Technol 33:1601–1609.  https://doi.org/10.1002/ceat.201000171 CrossRefGoogle Scholar
  13. Figueroa-González I, Moreno G, Carrillo-Reyes J, Sánchez A, Quijano G, Buitrón G (2018) From mesophilic to thermophilic conditions: one-step temperature increase improves the methane production of a granular sludge treating agroindustrial effluents. Biotechnol Lett 40:569–575.  https://doi.org/10.1007/s10529-017-2490-3 CrossRefGoogle Scholar
  14. Fisher RM, Le-Minh N, Alvarez-Gaitan JP et al (2018) Emissions of volatile sulfur compounds (VSCs) throughout wastewater biosolids processing. Sci Total Environ 616–617:622–631.  https://doi.org/10.1016/j.scitotenv.2017.10.282 CrossRefGoogle Scholar
  15. Flores-Alsina X, Solon K, Kazadi Mbamba C, Tait S, Gernaey KV, Jeppsson U, Batstone DJ (2016) Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes. Water Res 95:370–382.  https://doi.org/10.1016/j.watres.2016.03.012 CrossRefGoogle Scholar
  16. Fortuny M, Baeza JA, Gamisans X, Casas C, Lafuente J, Deshusses MA, Gabriel D (2008) Biological sweetening of energy gases mimics in biotrickling filters. Chemosphere 71:10–17.  https://doi.org/10.1016/j.chemosphere.2007.10.072 CrossRefGoogle Scholar
  17. Hao T w, yu XP, Mackey HR et al (2014) A review of biological sulfate conversions in wastewater treatment. Water Res 65:1–21CrossRefGoogle Scholar
  18. Hao X, Hou G, Zheng P, Liu R, Liu C (2016) H2S in-situ removal from biogas using a tubular zeolite/TiO2 photocatalytic reactor and the improvement on methane production. Chem Eng J 294:105–110.  https://doi.org/10.1016/J.CEJ.2016.02.098 CrossRefGoogle Scholar
  19. Holliger C, Alves M, Andrade D, Angelidaki I, Astals S, Baier U, Bougrier C, Buffière P, Carballa M, de Wilde V, Ebertseder F, Fernández B, Ficara E, Fotidis I, Frigon JC, de Laclos HF, Ghasimi DSM, Hack G, Hartel M, Heerenklage J, Horvath IS, Jenicek P, Koch K, Krautwald J, Lizasoain J, Liu J, Mosberger L, Nistor M, Oechsner H, Oliveira JV, Paterson M, Pauss A, Pommier S, Porqueddu I, Raposo F, Ribeiro T, Rüsch Pfund F, Strömberg S, Torrijos M, van Eekert M, van Lier J, Wedwitschka H, Wierinck I (2016) Towards a standardization of biomethane potential tests. Water Sci Technol 74:2515–2522.  https://doi.org/10.2166/wst.2016.336 CrossRefGoogle Scholar
  20. Janke L, Leite AF, Batista K, Silva W, Nikolausz M, Nelles M, Stinner W (2016) Enhancing biogas production from vinasse in sugarcane biorefineries: effects of urea and trace elements supplementation on process performance and stability. Bioresour Technol 217:10–20.  https://doi.org/10.1016/j.biortech.2016.01.110 CrossRefGoogle Scholar
  21. Lalov IG, Krysteva MA, Phelouzat JL (2001) Improvement of biogas production from vinasse via covalently immobilized methanogens. Bioresour Technol 79:83–85.  https://doi.org/10.1016/S0960-8524(01)00045-1 CrossRefGoogle Scholar
  22. Lens PNL, Visser A, Janssen AJH, Pol LWH, Lettinga G (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28:41–88.  https://doi.org/10.1080/10643389891254160 CrossRefGoogle Scholar
  23. Liu Y, Zhang Y, Ni BJ (2015) Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors. Water Res 75:292–300.  https://doi.org/10.1016/j.watres.2015.02.056 CrossRefGoogle Scholar
  24. Lo IMC, Woon KS (2016) Food waste collection and recycling for value-added products: potential applications and challenges in Hong Kong. Environ Sci Pollut Res 23:7081–7091.  https://doi.org/10.1007/s11356-015-4235-y CrossRefGoogle Scholar
  25. Maizonnasse M, Plante J-S, Oh D, Laflamme CB (2013) Investigation of the degradation of a low-cost untreated biogas engine using preheated biogas with phase separation for electric power generation. Renew Energy 55:501–513.  https://doi.org/10.1016/j.renene.2013.01.006 CrossRefGoogle Scholar
  26. Neves L, Gonçalo E, Oliveira R, Alves MM (2008) Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures. Waste Manag 28:965–972.  https://doi.org/10.1016/J.WASMAN.2007.03.031 CrossRefGoogle Scholar
  27. Noyola A, Morgan-Sagastume JM, López-Hernández JE (2006) Treatment of biogas produced in anaerobic reactors for domestic wastewater: odor control and energy/resource recovery. Rev Environ Sci Bio/Technology 5:93–114.  https://doi.org/10.1007/s11157-005-2754-6 CrossRefGoogle Scholar
  28. Peu P, Sassi JF, Girault R, Picard S, Saint-Cast P, Béline F, Dabert P (2011) Sulphur fate and anaerobic biodegradation potential during co-digestion of seaweed biomass (Ulva sp.) with pig slurry. Bioresour Technol 102:10794–10802.  https://doi.org/10.1016/j.biortech.2011.08.096 CrossRefGoogle Scholar
  29. Peu P, Picard S, Diara A, Girault R, Béline F, Bridoux G, Dabert P (2012) Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates. Bioresour Technol 121:419–424.  https://doi.org/10.1016/j.biortech.2012.06.112 CrossRefGoogle Scholar
  30. Pokorna D, Zabranska J (2015) Sulfur-oxidizing bacteria in environmental technology. Biotechnol Adv 33:1246–1259.  https://doi.org/10.1016/j.biotechadv.2015.02.007 CrossRefGoogle Scholar
  31. Quijano G, Figueroa-González I, Buitrón G (2018) Fully aerobic two-step desulfurization process for purification of highly H2S-laden biogas. J Chem Technol Biotechnol 93:3553–3561.  https://doi.org/10.1002/jctb.5732 CrossRefGoogle Scholar
  32. Rodríguez-Pimentel RI, Rodríguez-Pérez S, Monroy-Hermosillo O, Ramírez-Vives F (2015) Effect of organic loading rate on the performance of two-stage anaerobic digestion of the organic fraction of municipal solid waste (OFMSW). Water Sci Technol 72:384–390.  https://doi.org/10.2166/wst.2015.223 CrossRefGoogle Scholar
  33. Sander R (1999) Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry. http://www.henrys-law.org/henry.pdf. Accessed 5 Feb 2019Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de IngenieríaUniversidad Nacional Autónoma de MéxicoQuerétaroMexico

Personalised recommendations