Emergy-based environmental accounting of one mining system

Abstract

Metal production from mineral resources is crucial for economic development. However, most mining activities usually target short-term financial benefits, rather than long-term consideration on ecological sustainability. To better understand the impact of metal production, systematic evaluation methods should be applied to complement current economic accounting tools. Under such a circumstance, this study proposes an emergy-based metal production evaluation framework, taking a life cycle perspective from the formation of mineral deposit to the final production of metal. Ecosystem service loss, CO2 emissions, and emissions’ impact are quantified, evaluating the comprehensive performance of a lead and zinc production system in Yunnan Province of China. The results show that minerals contribute significantly to the formation of lead and zinc production; however, emergy received in terms of money substantially undervalues environmental work associated with production. Such a metal production system relies heavily on nonrenewable resources and put enormous pressures on local ecosystems. The beneficiation subsystem generates the highest negative impact per emergy output, followed by the smelting and refining subsystem and the underground mining subsystem. From climate change point of view, producing 1 ton of lead bullion leads to 1.79E+03 kg CO2eq. Electricity use contributes a dominated share to the total CO2 emission of all subsystems. In addition, lead recycling can greatly reduce the overall CO2 emission, indicating that it is necessary to build up a regional lead collection and recycling system. Finally, several policy suggestions are raised by considering the local realities, aiming to promote sustainable development of this industry.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ali SH, Giurco D, Arndt N, Nickless E, Brown G, Demetriades A, Durrheim R, Enriquez MA, Kinnaird J, Littleboy A, Meinert LD, Oberhänsli R, Salem J, Schodde R, Schneider G, Vidal O, Yakovleva N (2017) Mineral supply for sustainable development requires resource governance. Nature 543:367–372. https://doi.org/10.1038/nature21359

    Article  CAS  Google Scholar 

  2. Almeida CMVB, Madureira MA, Bonilla SH, Giannetti BF (2013) Assessing the replacement of lead in solders: effects on resource use and human health. J Clean Prod 47:457–464. https://doi.org/10.1016/j.jclepro.2012.08.002

    Article  CAS  Google Scholar 

  3. Andri I, Lacarri B, Andri I (2017) The impact of renovation measures on building environmental performance: an emergy approach. 162:776–790. https://doi.org/10.1016/j.jclepro.2017.06.053

  4. Bartelmus P (2014) Environmental-economic accounting: progress and digression in the SEEA revisions. Rev Income Wealth 60:887–904. https://doi.org/10.1111/roiw.12056

    Article  Google Scholar 

  5. Bastianoni S, Campbell DE, Ridolfi R, Pulselli FM (2009) The solar transformity of petroleum fuels. Ecol Model 220:40–50. https://doi.org/10.1016/j.ecolmodel.2008.09.003

    Article  CAS  Google Scholar 

  6. Brandt-Williams SL (2002) Folio #4. (2nd Printing). Emergy of Florida Agriculture. Handbook of emergy evaluation. A compendium of data for emergy computation. Center for Environmental Policy, University of Florida, Gainesville

  7. Brown MT, Bardi E (2001) Emergy of ecosystems folio #3. Compend Data Emergy Comput 94

  8. Brown MT, Buranakarn V (2003) Emergy indices and ratios for sustainable material cycles and recycle options. Resour Conserv Recycl 38:1–22. https://doi.org/10.1016/S0921-3449(02)00093-9

    Article  Google Scholar 

  9. Brown MT, Ulgiati S (2010) Updated evaluation of exergy and emergy driving the geobiosphere: a review and refinement of the emergy baseline. Ecol Model 221:2501–2508. https://doi.org/10.1016/j.ecolmodel.2010.06.027

    Article  Google Scholar 

  10. Brown MT, Ulgiati S (2016) Assessing the global environmental sources driving the geobiosphere: a revised emergy baseline. Ecol Model 339:126–132. https://doi.org/10.1016/j.ecolmodel.2016.03.017

    Article  Google Scholar 

  11. Brown MT, Raugei M, Ulgiati S (2012) On boundaries and “investments” in emergy synthesis and LCA: a case study on thermal vs. photovoltaic electricity. Ecol Indic 15:227–235. https://doi.org/10.1016/j.ecolind.2011.09.021

    Article  CAS  Google Scholar 

  12. Campbell DE (1998) Emergy analysis of human carrying capacity and regional sustainability: an example using the state of Maine. In: Environmental monitoring and assessment. pp. 531–569. https://doi.org/10.1023/A:1006043721115

  13. Campbell ET, Tilley DR (2014) Valuing ecosystem services from Maryland forests using environmental accounting. Ecosyst Serv 7:141–151. https://doi.org/10.1016/j.ecoser.2013.10.003

    Article  Google Scholar 

  14. Chen W, Liu W, Geng Y, Ohnishi S, Sun L, Han W, Tian X, Zhong S (2016) Life cycle based emergy analysis on China’s cement production. J Clean Prod 131:272–279. https://doi.org/10.1016/j.jclepro.2016.05.036

    Article  Google Scholar 

  15. Chen W, Zhong S, Geng Y, Chen Y, Cui X, Wu Q, Pan H, Wu R, Sun L, Tian X (2017) Emergy based sustainability evaluation for Yunnan Province, China. J Clean Prod 162:1388–1397. https://doi.org/10.1016/j.jclepro.2017.06.136

    Article  Google Scholar 

  16. China Nonferrous Metals Industry Yearbook (2006–2017) Nonferrous Metals Industry Press, Beijing (in Chinese)

  17. Cohen MJ, Sweeney S, Brown MT (2007) Computing the unit emergy value of crustal elements. Emergy Synth 4:16.1–16.12

    Google Scholar 

  18. Cooke JA, Johnson MS (2002) Ecological restoration of land with particular reference to the mining of metals and industrial minerals: a review of theory and practice. Environ Rev 10:41–71. https://doi.org/10.1139/a01-014

    Article  CAS  Google Scholar 

  19. Costanza R, D’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260. https://doi.org/10.1038/387253a0

    Article  CAS  Google Scholar 

  20. de Groot R, Brander L, van der Ploeg S, Costanza R, Bernard F, Braat L, Christie M, Crossman N, Ghermandi A, Hein L, Hussain S, Kumar P, McVittie A, Portela R, Rodriguez LC, ten Brink P, van Beukering P (2012) Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv 1:50–61. https://doi.org/10.1016/j.ecoser.2012.07.005

    Article  Google Scholar 

  21. De Vilbiss CD, Brown MT (2015) New method to compute the emergy of crustal minerals. Ecol Model 315:108–115. https://doi.org/10.1016/j.ecolmodel.2015.04.007

    Article  Google Scholar 

  22. Dewulf J, Boesch ME, De Meester B, Van Der Vorst G, Van Langenhove HR, Hellweg S, Huijbregts MAJ (2007) Cumulative exergy extraction from the naural environment (CEENE): a comprahensive life cycle impact assessment method for resource accounting. Environ Sci Technol 41:8477–8483. https://doi.org/10.1021/es0711415

    Article  CAS  Google Scholar 

  23. Du Z, Lin B (2018) Analysis of carbon emissions reduction of China’s metallurgical industry. J Clean Prod 176:1177–1184. https://doi.org/10.1016/j.jclepro.2017.11.178

    Article  Google Scholar 

  24. Gan Y, Griffin WM (2018) Analysis of life-cycle GHG emissions for iron ore mining and processing in China—uncertainty and trends. Resour Pol 58:90–96. https://doi.org/10.1016/j.resourpol.2018.03.015

    Article  Google Scholar 

  25. Geng Y, Zhang P, Ulgiati S, Sarkis J (2010) Emergy analysis of an industrial park: the case of Dalian. China Sci Total Environ 408:5273–5283. https://doi.org/10.1016/j.scitotenv.2010.07.081

    Article  CAS  Google Scholar 

  26. Geng Y, Sarkis J, Ulgiati S, Zhang P (2013) Measuring China’s circular economy. Science 339:1526–1527. https://doi.org/10.1126/science.1227059

    Article  CAS  Google Scholar 

  27. Geng Y, Sarkis J, Ulgiati S (2016) Sustainability, well-being, and the circular economy in China and worldwide. Science 351(6278):73–76

    Google Scholar 

  28. Geng Y, Tian X, Sarkis J, Ulgiati S (2017) China-USA trade: indicators for equitable and environmentally balanced resource exchange. Ecol Econ 132:245–254. https://doi.org/10.1016/j.ecolecon.2016.11.008

    Article  Google Scholar 

  29. Geng Y, Sarkis J, Bleischwizt R (2019) How to globalize the circular economy. Nature 565:153–155. https://doi.org/10.1038/d41586-019-00017-z

    Article  CAS  Google Scholar 

  30. Goedkoop M, Spriensma R (2000) The eco-indicator 99: a DamageOriented method for life cycle impact assessment: methodology report. Pre. Consultans, Amersfoort

    Google Scholar 

  31. Hubacek K, Guan D, Barrett J, Wiedmann T (2009) Environmental implications of urbanization and lifestyle change in China: ecological and water footprints. J Clean Prod 17:1241–1248. https://doi.org/10.1016/j.jclepro.2009.03.011

    Article  Google Scholar 

  32. Ingwersen WW (2011) Emergy as a life cycle impact assessment Indicator: a gold mining case study. J Ind Ecol 15:550–567. https://doi.org/10.1111/j.1530-9290.2011.00333.x

    Article  Google Scholar 

  33. IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change (IPCC)

  34. IPCC (2018) GLOBAL WARMING OF 1.5 °C. Intergovernmental Panel on Climate Change (IPCC)

  35. Jamali-Zghal N, Le Corre O, Lacarrière B (2014) Mineral resource assessment: compliance between emergy and exergy respecting Odum’s hierarchy concept. Ecol Model 272:208–219. https://doi.org/10.1016/j.ecolmodel.2013.09.017

    Article  Google Scholar 

  36. Krausmann F, Gingrich S, Eisenmenger N, Erb KH, Haberl H, Fischer-Kowalski M (2009) Growth in global materials use, GDP and population during the 20th century. Ecol Econ 68:2696–2705. https://doi.org/10.1016/j.ecolecon.2009.05.007

    Article  Google Scholar 

  37. Li Z, Du H, Xiao Y, Guo J (2017) Carbon footprints of two large hydro-projects in China: life-cycle assessment according to ISO/TS 14067. Renew Energy 114:534–546. https://doi.org/10.1016/j.renene.2017.07.073

    Article  CAS  Google Scholar 

  38. Liang Y, Yu B, Wang L (2019) Costs and benefits of renewable energy development in China’s power industry. Renew Energy 131:700–712. https://doi.org/10.1016/j.renene.2018.07.079

    Article  Google Scholar 

  39. Liu J, Diamond J (2008) Revolutionizing China’s environmental protection. Science (80-. ). 319:37–38. https://doi.org/10.1126/science.1150416

    Article  CAS  Google Scholar 

  40. Liu G, Yang Z (2018) Emergy theory and practice: ecological environmental accounting and urban green management. Science press, Beijing (in Chinese)

    Google Scholar 

  41. Liu G, Yang Z, Chen B, Ulgiati S (2014) Emergy-based dynamic mechanisms of urban development, resource consumption and environmental impacts. Ecol Model 271:90–102. https://doi.org/10.1016/j.ecolmodel.2013.08.014

    Article  Google Scholar 

  42. MEA (2005) Ecosystems and human well-being: synthesis/millennium ecosystem assessment. World Health 1134:25–60. https://doi.org/10.1196/annals.1439.003

    Article  Google Scholar 

  43. Meillaud F, Gay JB, Brown MT (2005) Evaluation of a building using the emergy method. In: Solar Energy. pp. 204–212. https://doi.org/10.1016/j.solener.2004.11.003

  44. Ministry of Environmental Protection of the People’s Republic China (2002) Environmental Quality Standards for Surface Water GB3838–2002.(in Chinese)

  45. Ministry of Environmental Protection of the People’s Republic China (2012) Ambient Air Quality Standard (GB3095–2012). (in Chinese)

  46. National Bureau of Statistics of China (2016) China Statistical Yearbook 2015

  47. NDRC (2011) Guildelines for provincal greenhouse gas inventories. (in Chinese)

  48. Norgate TE, Jahanshahi S, Rankin WJ (2007) Assessing the environmental impact of metal production processes. J Clean Prod 15:838–848. https://doi.org/10.1016/j.jclepro.2006.06.018

    Article  Google Scholar 

  49. Odum HT (1996) Environmental accounting. Emergy and environmental decision making. John Wiley Sons, INC 370. https://doi.org/10.1017/CBO9781107415324.004

  50. Odum HT (2000) Folio #2 Emergy of global processes. Handb Emergy Eval 1–40

  51. Odum HT (2007) Environment, power and society for the twenty-first century: the hierarchy of energy. Energy 432. https://doi.org/10.7312/odum12886

  52. Odum HT, Brown MT, Brandt-Williams S (2000) Handbook of emergy evaluation folio #1: introduction and global budget. Univ. Florida, Gainesv

  53. Ouyang Z, Zheng H, Xiao Y, Polasky S, Liu J, Xu W, Wang Q, Zhang L, Xiao Y, Rao E, Jiang L, Lu F, Wang X, Yang G, Gong S, Wu B, Zeng Y, Yang W, Daily GC (2016) Improvements in ecosystem services from investments in natural capital. Science (80-. ) 352:1455–1459. https://doi.org/10.1126/science.aaf2295

    Article  CAS  Google Scholar 

  54. Pan H, Zhang X, Wang Y, Qi Y, Wu J, Lin L, Peng H, Qi H, Yu X, Zhang Y (2016a) Emergy evaluation of an industrial park in Sichuan Province, China: a modified emergy approach and its application. J Clean Prod 135:105–118. https://doi.org/10.1016/j.jclepro.2016.06.102

    Article  Google Scholar 

  55. Pan H, Zhang X, Wu J, Zhang Y, Lin L, Yang G, Deng S, Li L, Yu X, Qi H, Peng H (2016b) Sustainability evaluation of a steel production system in China based on emergy. J Clean Prod 112:1498–1509. https://doi.org/10.1016/j.jclepro.2015.05.019

    Article  Google Scholar 

  56. Pan H, Geng Y, Jiang P, Dong H, Sun L, Wu R (2018) An emergy based sustainability evaluation on a combined landfill and LFG power generation system. Energy 143:310–322. https://doi.org/10.1016/j.energy.2017.10.144

    Article  Google Scholar 

  57. Pan H, Geng Y, Dong H, Ali M, Xiao S (2019) Sustainability evaluation of secondary lead production from spent lead acid batteries recycling. Resour Conserv Recycl 140:13–22. https://doi.org/10.1016/j.resconrec.2018.09.012

    Article  Google Scholar 

  58. Pulselli RM, Simoncini E, Pulselli FM, Bastianoni S (2007) Emergy analysis of building manufacturing, maintenance and use: Em-building indices to evaluate housing sustainability. Energy Build 39:620–628. https://doi.org/10.1016/j.enbuild.2006.10.004

    Article  Google Scholar 

  59. Pulselli RM, Simoncini E, Ridolfi R, Bastianoni S (2008) Specific emergy of cement and concrete: an energy-based appraisal of building materials and their transport. Ecol Indic 8:647–656. https://doi.org/10.1016/j.ecolind.2007.10.001

    Article  Google Scholar 

  60. SEEA Central Framework (2012) System of environmental-economic accounting: a central framework, White cover publication

  61. Shan Y, Guan D, Zheng H, Ou J, Li Y, Meng J, Mi Z, Liu Z, Zhang Q (2018) China CO2 emission accounts 1997-2015. Sci Data 5:1–14. https://doi.org/10.1038/sdata.2017.201

    Article  CAS  Google Scholar 

  62. Shao S, Liu J, Geng Y, Miao Z, Yang Y (2016) Uncovering driving factors of carbon emissions from China’s mining sector. Appl Energy 166:220–238. https://doi.org/10.1016/j.apenergy.2016.01.047

    Article  Google Scholar 

  63. Sun L, Zhang C, Li J, Zeng X (2016) Assessing the sustainability of lead utilization in China. J Environ Manag 183:275–279. https://doi.org/10.1016/j.jenvman.2016.05.063

    Article  CAS  Google Scholar 

  64. Tian X, Wu Y, Hou P, Liang S, Qu S, Xu M, Zuo T (2017) Environmental impact and economic assessment of secondary lead production: comparison of main spent lead-acid battery recycling processes in China. J Clean Prod 144:142–148. https://doi.org/10.1016/j.jclepro.2016.12.171

    Article  CAS  Google Scholar 

  65. Ukidwe NU, Bakshi BR (2004) Thermodynamic accounting of ecosystem contribution to economic sectors with application to 1992 U.S. economy. Environ Sci Technol 38:4810–4827. https://doi.org/10.1021/es035367t

    Article  CAS  Google Scholar 

  66. Ulgiati S, Brown MT (2002) Quantifying the environmental support for dilution and abatement of process emissions: the case of electricity production. J Clean Prod 10:335–348. https://doi.org/10.1016/S0959-6526(01)00044-0

    Article  Google Scholar 

  67. Wang L, Zhang J, Ni W (2005) Emergy evaluation of eco-Industrial Park with power plant. Ecol Model 189:233–240. https://doi.org/10.1016/j.ecolmodel.2005.02.005

    Article  Google Scholar 

  68. Yu X, Geng Y, Dong H, Fujita T, Liu Z (2016) Emergy-based sustainability assessment on natural resource utilization in 30 Chinese provinces. J Clean Prod 133:18–27. https://doi.org/10.1016/j.jclepro.2016.05.103

    Article  Google Scholar 

  69. Zhang B, Chen B (2016) Sustainability accounting of a household biogas project based on emergy. Appl Energy 194:819–831. https://doi.org/10.1016/j.apenergy.2016.05.141

    Article  Google Scholar 

  70. Zhang X, Jiang W, Deng S, Peng K (2009) Emergy evaluation of the sustainability of Chinese steel production during 1998-2004. J Clean Prod 17:1030–1038. https://doi.org/10.1016/j.jclepro.2009.02.014

    Article  CAS  Google Scholar 

  71. Zhang X, Yang L, Li Y, Li H, Wang W, Ye B (2012) Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ Monit Assess 184:2261–2273. https://doi.org/10.1007/s10661-011-2115-6

    Article  CAS  Google Scholar 

  72. Zhang W, Yang J, Wu X, Hu Y, Yu W, Wang J, Dong J, Li M, Liang S, Hu J, Kumar RV (2016) A critical review on secondary lead recycling technology and its prospect. Renew Sust Energ Rev 61:108–122. https://doi.org/10.1016/j.rser.2016.03.046

    Article  CAS  Google Scholar 

  73. Zhang X, Shen J, Wang Y, Qi Y, Liao W, Shui W, Li L, Qi H, Yu X (2017) An environmental sustainability assessment of China’s cement industry based on emergy. Ecol Indic 72:452–458. https://doi.org/10.1016/j.ecolind.2016.08.046

    Article  Google Scholar 

  74. Zhao Y, Wen Q, Ai J (2010) Ecosystem service value of forests in Yunnan province. For Res 23:184–190 (in Chinese)

    Article  Google Scholar 

Download references

Funding

This study is supported by the Natural Science Foundation of China (71690241, 71810107001, 71325006, 71704104,), the Fundamental Research Funds for the Central Universities through Shanghai Jiao Tong University (16JCCS04), the Shanghai Municipal Government (17XD1401800), and Yunnan Provincial Research Academy of Environmental Science.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yong Geng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Geng, Y., Tian, X. et al. Emergy-based environmental accounting of one mining system. Environ Sci Pollut Res 26, 14598–14615 (2019). https://doi.org/10.1007/s11356-019-04793-z

Download citation

Keywords

  • Environmental accounting
  • Emergy analysis
  • CO2 emission
  • Lead and zinc
  • Governance