Skip to main content
Log in

Characterization of the Cd(II) and nitrate removal by bacterium Acinetobacter sp. SZ28 under different electron donor conditions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, zero-valent iron (ZVI), nanoscale zero-valent iron (nZVI), Fe(II), and Mn(II) were investigated for their effects on mixotrophic denitrification coupled with cadmium (Cd(II)) adsorption process by Acinetobacter sp. SZ28. The removal rates of nitrate were 0.228 mg L−1 h−1 (ZVI), 0.133 mg L−1 h−1 (nZVI), 0.309 mg L−1 h−1 (Fe(II)) and 0.234 mg L−1 h−1 (Mn(II)), respectively. The Cd(II) removal efficiencies were 97.23% (ZVI), 95.79% (nZVI), 80.63% (Fe(II)), and 84.58% (Mn(II)), respectively. Meteorological chromatography analysis indicated that the characteristics of gas composition were different under different electron donor conditions. Moreover, characterization of bacterial metabolites produced by strain SZ28 under different conditions was analyzed. Sequence amplification identified the presence of the nitrate reductase gene (napA) and Mn(II)-oxide gene (cumA) in strain SZ28. The results of XRD and SEM indicated that ZVI, nZVI, Fe(II), and Mn(II) were oxidized into corresponding oxides. XPS spectra indicated that the Cd(II) was adsorbed onto biogenic precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC, USA

    Google Scholar 

  • Badireddy AR, Chellam S, Gassman PL, Engelhard MH, Lea AS, Rosso KM (2010) Role of extracellular polymeric substances in bioflocculation of activated sludge microorganisms under glucose-controlled conditions. Water Res 44:4505–4516

    Article  CAS  Google Scholar 

  • Bai YH, Yang TT, Liang JS, Qu JH (2016) The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems. Water Res 98:119–127

    Article  CAS  Google Scholar 

  • Boontian N (2015) Effect of zero valent iron (ZVI) in wastewater treatment: a review. Appl Mech Mater 775:180–184

    Article  Google Scholar 

  • Cheng QM, Huang Q, Khan S, Liu YJ, Liao ZN, Li G, Ok YS (2016) Adsorption of Cd by peanut husks and peanut husk biochar from aqueous solutions. Ecol Eng 87:240–245

    Article  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125

    Article  Google Scholar 

  • Dong HR, Zhao F, He Q, Xie YK, Zeng YL, Zhang LH, Tang L, Zeng GM (2017) Physicochemical transformation of carboxymethyl cellulose-coated zero-valent iron nanoparticles (nZVI) in simulated groundwater under anaerobic conditions. Sep Purif Technol 175:376–383

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2013) Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere. 92:131–137

    Article  CAS  Google Scholar 

  • Fang HHP, Jia XS (1996) Extraction of extracellular polymer from anaerobic sludges. Biotechnol Tech 10(11):803–808

    Article  CAS  Google Scholar 

  • Ghafari S, Hasan M, Aroua MK (2010) A kinetic study of autohydrogenotrophic denitrification at the optimum pH and sodium bicarbonate dose. Bioresour Technol 101:2236–2242

    Article  CAS  Google Scholar 

  • Gupta SS, Bhattacharyya KG (2008) Immobilization of Pb (II), Cd (II) and Ni (II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J Environ Manag 87:46–58

    Article  CAS  Google Scholar 

  • Hang QH, Wang HY, Chu ZS, Hou ZY, Zhou YX, Li CM (2017) Nitrate-rich agricultural runoff treatment by Vallisneria-sulfur based mixotrophic denitrification process. Sci Total Environ 587-588:108–117

    Article  CAS  Google Scholar 

  • Huang X, Li W, Zhang D, Qin W (2013) Ammonium removal by a novel oligotrophic Acinetobacter sp: Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature. Bioresour Technol 146(10):44–50

    Article  CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1997) Niterate review from drinking water-review. J Environ Eng 123(4):371–380

    Article  CAS  Google Scholar 

  • Kooner ZS (1993) Comparative study of adsorption behavior of copper, lead, and zinc onto goethite in aqueous systems. Environ Geol 21:242–250

    Article  CAS  Google Scholar 

  • Liu H, Fang HHP (2002) Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnolo 95:249–256

    Article  CAS  Google Scholar 

  • Luo XX, Su JF, Shao PH, Liu H, Luo XB (2018) Efficient autotrophic denitrification performance through integrating the bio-oxidation of Fe (II) and Mn (II). Chem Eng J 348:669–677

    Article  CAS  Google Scholar 

  • Mubarak NM, Sahu JN, Abdullah EC, Jayakumar NS (2015) Ganesan, P. Microwave assisted multiwall carbon nanotubes enhancing Cd (II) adsorption capacity in aqueous media. J Ind Eng Chem 24:24–33

    Article  CAS  Google Scholar 

  • Neyens E, Baeyens J, Dewil R, De Heyder B (2004) Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J Hazard Mater 106:83–92

    Article  CAS  Google Scholar 

  • Peng L, Liu YW, Gao SH, Chen XM, Xin P, Dai XH, Ni BJ (2015) Evaluation on the nanoscale zero valent iron based microbial denitrification for nitrate removal from groundwater. Sci Rep 5:1–5

    Google Scholar 

  • Phenrat T, Long TC, Lowry GV, Veronesi B (2009) Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43(1):195–200

    Article  CAS  Google Scholar 

  • Qin QD, Wang QQ, Fu DF, Ma J (2011) An efficient approach for Pb (II) and Cd (II) removal using manganese dioxide formed in situ. Chem Eng J 172:68–74

    Article  CAS  Google Scholar 

  • Ribera-Guardia A, Kassotaki E, Gutierrez O, Pijuan M (2014) Effect of carbon source and competition for electrons on nitrous oxide reduction in a mixed denitrifying microbial community. Process Biochem. 49(12):2228–2234

    Article  CAS  Google Scholar 

  • Sahinkaya E, Yurtsever A, Ucar D (2016) A novel elemental sulfur-based mixotrophic denitrifying membrane bioreactor for simultaneous Cr (VI) and nitrate reduction. J Hazard Mater 324:15–21

    Article  Google Scholar 

  • Shrimali M, Singh KP (2001) New methods of nitrate removal from water. Environ Pollut 112:351–359

    Article  CAS  Google Scholar 

  • Su JF, Zheng SC, Huang TL, Ma F, Shao SC, Yang SF, Zhang LN (2015) Simultaneous removal of Mn (II) and nitrate by the manganese-oxidizing bacterium Acinetobacter sp. SZ28 in anaerobic conditions. Geomicrobiol J 7:586–591

    Google Scholar 

  • Su JF, Luo XX, Huang TL, Ma F, Zheng SC, Shao SC (2017) Effect of mixed electron donors on autotrophic denitrification by Pseudomonas sp. SZF15. Ind Eng Chem Res 56:1723–1730

    Article  CAS  Google Scholar 

  • Su JF, Liang DH, Lian TT (2018) Comparison of denitrification performance by bacterium Achromobacter sp. A14 under different electron donor conditions. Chem Eng J 333:320–326

    Article  CAS  Google Scholar 

  • Van RJ, Tal Y, Schreier HJ (2006) Denitrification in recirculating systems: theory and applications. Aquac Eng 34:364–376

    Article  Google Scholar 

  • Wan SL, Wu JY, Zhou SS, Wang R, Gao B, He F (2018) Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: behavior and mechanism. Sci Total Environ 616-617:1298–1306

    Article  CAS  Google Scholar 

  • Wang JL, Chu LB (2016) Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnol Adv 34(6):1103–1112

    Article  CAS  Google Scholar 

  • Wang HY, Song Q, Wang J, Zhang H, He QL, Zhang W, Song JY, Zhou JP, Li H (2018) Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen: effects of carbon to nitrogen ratios. Sci Total Environ 642:1145–1152

    Article  CAS  Google Scholar 

  • Xu J, Hao ZW, Xie CS, Lv XS, Yang YP, Xu XH (2012) Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zero-valent iron. Desalination. 284:9–13

    Article  CAS  Google Scholar 

  • Xu CZ, Wang XM, An Y, Yue JJ, Zhang RL (2018) Potential electron donor for nanoiron supported hydrogenotrophic denitrification: H2 gas, Fe0, ferrous oxides, Fe2+ (aq), or Fe2+ (ad)? Chemosphere. 202:644–650

    Article  CAS  Google Scholar 

  • Yang GC, Lee HL (2005) Chemical reduction of nitrate by nanosized iron: kinetic sand pathways. Water Res 39(5):884–894

    Article  CAS  Google Scholar 

  • Yao S, Ni J, Ma T, Li C (2013) Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2, Bioresour. Technol. 139(13):80–86

    CAS  Google Scholar 

  • Zhou DH, Kim DG, Ko SO (2014) Heavy metal adsorption with biogenic manganese oxides generated by Pseudomonas putida strain MnB1. J Ind Eng Chem 24:132–139

    Article  Google Scholar 

Download references

Funding

This research work was partly supported by the National Natural Science Foundation of China (NSFC) (No. 51678471), the National Key Research and Development Program of China (2016YFC0400706), and Key Scientific Technological Innovation Team Plan of Shaanxi Province (No. 2017KCT-19-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Feng Su.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J.F., Gao, C.Y., Huang, T.L. et al. Characterization of the Cd(II) and nitrate removal by bacterium Acinetobacter sp. SZ28 under different electron donor conditions. Environ Sci Pollut Res 26, 12698–12708 (2019). https://doi.org/10.1007/s11356-019-04770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04770-6

Keywords

Navigation