Abstract
In this work, TiO2-based nanomaterials have been successfully synthesized by doping TiO2 with Co, Mn, and Ni and by co-doping it with (P,Mo) or (P,W). The structural, optical, and morphological properties of the synthesized nanomaterials have been investigated using various techniques such as XRD, FTIR spectroscopy, UV-vis diffuse reflectance spectroscopy, XPS, and SEM-EDS. The obtained results showed that the crystalline structure of the doped TiO2-based nanomaterials depends strongly on the nature of the doping ions. The obtained band gap energy of TiO2 co-doped with (P,Mo) changes to a level below the band gap energy of TiO2 anatase indicating a high ability to absorb visible light. The obtained photocatalytic activity results of methyl orange degradation showed that, under visible light, the mono-doping of TiO2 with Co and its co-doping with (P,Mo) or (P,W) improve significantly the photocatalytic activity of TiO2 in comparison with undoped TiO2. The activity order obtained under UV-A irradiation for the used photocatalysts is TiO2 > > 1%Ni-TiO2 > 1%Co-TiO2 > 30%(P,Mo)-TiO2 ≈ 30%(P,W)TiO2 > 1%Mn-TiO2 while under visible light, it is 1%Co-TiO2 > 30%(P,Mo)-TiO2 > 30%(P,W)TiO2 ≈ TiO2 > 1%Ni-TiO2 > 1%Mn-TiO2. The high photocatalytic activity observed for these samples could be the result of a synergetic effect of the high visible light absorption capacity and the low recombination rate of photoexcited electrons and holes.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4:37003–37026. https://doi.org/10.1039/C4RA06658H
Amna T, Shamshi Hassan M, Pandurangan M, Khil M-S, Lee H-K, Hwangn IH (2013) Characterization and potent bactericidal effect of Cobalt doped titanium dioxide nanofibers. Ceram Int 39:3189–3193. https://doi.org/10.1016/j.ceramint.2012.10.00
Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216:505–516. https://doi.org/10.1016/S0021-9517(02)00104-5
Ashraf MA, Hussain M, Mahmood K, Wajid A, Yusof M, Alias Y, Yusoff I (2013) Removal of acid yellow-17 dye from aqueous solution using eco-friendly biosorbent. Desalin Water Treat 51(22–24):4530–4545. https://doi.org/10.1080/19443994.2012.747187
Avilés-García O, Espino-Valencia J, Romero R, Rico-Cerda JL, Arroyo-Albiter M, Natividad R (2017) W and Mo doped TiO2: Synthesis, characterization and photocatalytic activity. Fuel 198:31–41. https://doi.org/10.1016/j.fuel.2016.10.005
Barakat MA, Schaeffer H, Hayes G, Ismat-Shah S (2005) Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl Catal B Environ 57(1):23–30. https://doi.org/10.1016/j.apcatb.2004.10.001
Beamson G, Briggs D (1993) High resolution XPS of organic polymers: the Scienta ESCA300. Database. J Chem Educ 70(1): A25. https://doi.org/10.1021/ed070pA25.5
Bhosale RR, Pujari SR, Muley GG, Patil SH, Patil KR, Shaikh MF, Gambhire AB (2014) Solar photocatalytic degradation of methylene blue using doped TiO2 nanoparticles. Sol Energy 103:473–479. https://doi.org/10.1016/j.solener.2014.02.043
Bidaye PP, Khushalani D, Fernandes JB (2010) A simple method for synthesis of S-doped TiO2 of high photocatalytic activity. Catal Lett 134:169–174. https://doi.org/10.1007/s10562-009-0217-3
Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051
Bryan JD, Heald SM, Chambers SA, Gamelin DR (2004) Strong room-temperature ferromagnetism in Co2+-doped TiO2 made from colloidal nanocrystals. J Am Chem Soc 126:11640–11647. https://doi.org/10.1021/ja047381r
Budigi L, Nasina MR, Shaik K, Amaravadi S (2015) Structural and optical properties of zinc titanates synthesized by precipitation method. J Chem Sci 127:509–518. https://doi.org/10.1007/s12039-015-0802-5
Chen F, Yang Q, Wang SN, Yao FB, Sun J, Wang YL, Zhang C, Li X, Niu C, Wang D, Zeng G (2017) Graphene oxide and carbon nitride nanosheets co-modified silver chromate nanoparticles with enhanced visible-light photoactivity and anti-photocorrosion properties towards multiple refractory pollutants degradation. Appl Catal B Environ 209:493–505. https://doi.org/10.1016/j.apcatb.2017.03.026
Chena Y, Yang S, Wang K, Lou L (2005) Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. J Photochem Photobiol A Chem 172:47–54. https://doi.org/10.1016/j.jphotochem.2004.11.006
Cheng X, Yu X, Xing Z (2012) Characterization and mechanism analysis of Mo–N-Co-doped TiO2 nano-photocatalyst and its enhanced visible activity. J Colloid Interface Sci 372:1–5. https://doi.org/10.1016/j.jcis.2011.11.071
Daneshvar N, Salari D, Khatae AR (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A Chem 162:317–322. https://doi.org/10.1016/S1010-6030(03)00378-2
Daou I, El-Kaddadi L, Zegaoui O, Asbik M, Zari N (2018) Structural, morphological and thermal properties of novel hybrid-microencapsulated phase change materials based on Fe2O3, ZnO and TiO2 nanoparticles for latent heat thermal energy storage applications. J Energy Storage 17:84–92. https://doi.org/10.1016/j.est.2018.02.011
Devi S, Jha AK (2009) Phase transitions and electrical characteristics of tungsten substituted barium titanate. Phys B Condens Matter 404:4290–4294. https://doi.org/10.1016/j.physb.2009.08.064
Devi LG, Murthy BN (2008) Characterization of Mo doped TiO2 and its enhanced photo catalytic activity under visible light. Catal Lett 125:320–330. https://doi.org/10.1007/s10562-008-9568-4
Devi LG, Kottam N, Kumar SG (2009a) Preparation and characterization of Mn doped titanates with a bicrystalline framework: correlation of the crystallite size with the synergistic effect on the photocatalytic activity. J Phys Chem C 113:15593–15601. https://doi.org/10.1021/jp903711a
Devi LG, Kumar SG, Murthy BN, Kottam N (2009b) Influence of Mn2+ and Mo6+ n dopants on the phase transformations of TiO2 lattice and its photo catalytic activity under solar illumination. Catal Commun 10:794–798. https://doi.org/10.1016/j.catcom.2008.11.041
Dholam R, Patel N, Miotello A (2011) Efficient H2 production by water-splitting using indium–tin-oxide/V-doped TiO2 multilayer thin film photocatalyst. Int J Hydrog Energy 36:6519–6528. https://doi.org/10.1016/j.ijhydene.2011.03.028
Dorraj M, Goh BT, Sairi NA, Woi PM, Basirun WJ (2018) Improved visible-light photocatalytic activity of TiO2 co-doped with copper and iodine. Appl Surf Sci 439:999–1009. https://doi.org/10.1016/j.apsusc.2017.12.248
Dung NT, Van Khoa N, Herrmann JM (2005) Photocatalytic degradation of reactive dye RED-3BA in aqueous TiO2 suspension under UV-visible light. Int J Photoenergy 7:11–15. https://doi.org/10.1155/S1110662X05000024
Dvoranova D, Brezova V, Mazur M, Malati MA (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal B 37:91–105. https://doi.org/10.1016/S0926-3373(01)00335-6
El Mragui A, Daou I, Zegaoui O (2019) Influence of the preparation method and ZnO/(ZnO + TiO2) weight ratio on the physicochemical and photocatalytic properties of ZnO-TiO2 nanomaterials. Catal Today 321–322:41–51. https://doi.org/10.1016/j.cattod.2018.01.016
Elghniji K, Soro J, Rossignol S, Ksibi M (2012) A simple route for the preparation of P-modified TiO2: effect of phosphorus on thermal stability and photocatalytic activity. J Taiwan Inst Chem Eng 43:132–139. https://doi.org/10.1016/j.jtice.2011.06.011
Evgenidou E, Fytianos K, Poulios I (2005) Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl Catal B Environ 59:81–89. https://doi.org/10.1016/j.apcatb.2005.01.005
Feng H, Zhang M-H, Yu LE (2013) Phosphorus-doped TiO2 catalysts with stable anatase–brookite biphase structure: synthesis and photocatalytic performance. J Nanosci Nanotechnol 13:4981–4989. https://doi.org/10.1166/jnn.2013.7606
Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357. https://doi.org/10.1021/cr00017a016
Fu J, Tian Y, Chang B, Xi F, Dong X (2013) Facile fabrication of N-doped TiO2 nanocatalyst with superior performance under visible light irradiation. J Solid State Chem 199:280–286. https://doi.org/10.1016/j.jssc.2012.12.020
Gomathi Devi L, Girish Kumar S, Mohan Reddy K, Munikrishnappa C (2009) Photo degradation of methyl orange an azo dye by advanced fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism. J Hazard Mater 164:459–467. https://doi.org/10.1016/j.jhazmat.2008.08.017
Gong J, Yang C, Zhang J, Pu W (2014) Origin of photocatalytic activity of W/N-codoped TiO2: H2 production and DFT calculation with GGA plus U. Appl Catal B Environ 152–153:73–81. https://doi.org/10.1016/j.apcatb.2014.01.028
Gopal N, Lo H, Ke T (2012) Visible light active phosphorus-doped TiO2 nanoparticles: an EPR evidence for the enhanced charge separation. J Phys Chem C 116:16191–16197. https://doi.org/10.1021/jp212346f
Guo S, Wang F, Sun J (2010) Marked enhancement of photocatalytic activity of P-doped TiO2 with hydrothermal method. Adv Mater Res 113:2150–2215. https://doi.org/10.4028/www.scientific.net/AMR.113-116.2150
Gutiérrez-Alejandre A, Ramírez J, Busca G (1998) The electronic structure of oxide-supported tungsten oxide catalysts as studied by UV spectroscopy. Catal Lett 56:29–33. https://doi.org/10.1023/A:1019076121915
Hadjltaief HB, Galvez ME, Zina MB, Da Costa P (2014) TiO2/clay as a heterogeneous catalyst in photocatalytic/photochemical oxidation of anionic reactive blue 19. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.11.006
He D, Li Y, Wang I, Wu J, Yang Y, An Q (2017) Carbon wrapped and doped TiO2 mesoporous nanostructure with efficient visible-light photocatalysis for NO removal. Appl Surf Sci 391:318–325. https://doi.org/10.1016/j.apsusc.2016.06.186
Hu C, Tang Y, Jiang Z, Hao Z, Tang H, Wong PK (2003) Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2. Appl Catal A Gen 253:389–396. https://doi.org/10.1016/S0926-860X(03)00545-3
Huo R, Yang J-Y, Liu Y-Q, Liu H-F, Li X, Xu Y-H (2016) Preparation of W and N, S-codoped titanium dioxide with enhanced photocatalytic activity under visible light irradiation. Mater Res Bull 76:72–78. https://doi.org/10.1016/j.materresbull.2015.12.010
Iwasaki M, Hara M, Kawada H, Tada H, Ito S (2000) Cobalt ion-doped TiO2 photocatalyst response to visible light. J Colloid Interface Sci 224:202–204. https://doi.org/10.1006/jcis.1999.6694
Jaiswal R, Bharambe J, Patel N, Dashora A, Kothari DC, Miotello A (2015) Copper and nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl Catal B Environ 168–169:333–341. https://doi.org/10.1016/j.apcatb.2014.12.053
Jaiswal R, Patel N, Dashora A, Fernandes R, Yadav M, Edla R, Varma RS, Kothari DC, Ahuja BL, Miotello A (2016) Efficient Co-B-codoped TiO2 photocatalyst for degradation of organic water pollutant under visible light. Appl Catal B Environ 183:242–253. https://doi.org/10.1016/j.apcatb.2015.10.041
Jeong B-S, Heo YW, Norton DP, Hebard AF, Budai JD, Park YD (2005) Properties of anatase CoxTi1-xO2 thin films epitaxially grown by reactive sputtering. Thin Solid Films 488:194–199. https://doi.org/10.1016/j.tsf.2005.04.113
Jiang P, Xiang W, Kuang J, Liu W, Caoab W (2015) Effect of cobalt doping on the electronic, optical and photocatalytic properties of TiO2. Solid State Sci 46:27–32. https://doi.org/10.1016/j.solidstatesciences.2015.05.007
Jin M, Zhang X, Pu H, Nishimoto S, Murakami T, Fujishima A (2011) Photochromism-based detection of volatile organic compounds by W-doped TiO2 nanofibers. J Colloid Interface Sci 362:188–193. https://doi.org/10.1016/j.jcis.2011.06.041
Jin S, Dong G, Luod J, Ma F, Wang C (2018) Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst. Appl Catal B Environ 227:24–34. https://doi.org/10.1016/j.apcatb.2018.01.020
Joshi MM, Labhsetwar NK, Mangrulkar PA, Tijare SN, Kamble SP, Rayalu SS (2009) Visible light induced photoreduction of methyl orange by N-doped mesoporous titania. Appl Catal A 357:26–33. https://doi.org/10.1016/j.apcata.2008.12.030
Khan MI (2018) Synthesis, characterization and application of Co doped TiO2 multilayer thin films. Results Phys 9:359–363. https://doi.org/10.1016/j.rinp.2018.02.068
Khan M, Cao W (2013) Cationic (V, Y)-codoped TiO2 with enhanced visible light induced photocatalytic activity: a combined experimental and theoretical study. J Appl Phys 114:183514. https://doi.org/10.1063/1.4831658
Khan M, Jiang P, Li J, Cao WB (2014a) Enhanced photoelectrochemical properties of TiO2 by codoping with tungsten and silver. J Appl Phys 115:153103. https://doi.org/10.1063/1.4871977
Khan M, Xu J, Cao W, Liu Z-K (2014b) Mo-doped TiO2 with enhanced visible light photocatalytic activity: A combined experimental and theoretical study. J Nanosci Nanotechnol 14:6865–6871. https://doi.org/10.1166/jnn.2014.8985
Kong L, Wang C, Wan F, Zheng H, Zhang X (2017) Synergistic effect of surface self doping and Fe species-grafting for enhanced photocatalytic activity of TiO2 under visible-light. Appl Surf Sci 396:26–35. https://doi.org/10.1016/j.apsusc.2016.11.051
Krishnan SG, Archana PS, Vidyadharan B, Misnon II, Vijayan BL, Nair VM, Gupta A, Jose R (2016) Modification of capacitive charge storage of TiO2 with nickel doping. J Alloys Compd 684:328–334. https://doi.org/10.1016/j.jallcom.2016.05.183
Lee JM, Kim JW, Lim JS, Kim TJ, Kim SD, Park SJ, Lee YS (2007) X-ray photoelectron spectroscopy study of cobalt supported multi-walled carbon nanotubes prepared by different precursors. Carbon Lett 8:120–126. https://doi.org/10.5714/CL.2007.8.2.120
Li H, Zhang X, Huo Y, Zhu J (2007) Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization. Environ Sci Technol 41:4410–4414. https://doi.org/10.1021/es062680x
Li J, Xu J, Dai W, Li H, Fan K (2008) One-pot synthesis of twist-like helix tungsten-nitrogen-codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol. Appl Catal B Environ 82:233–243. https://doi.org/10.1016/j.apcatb.2008.01.022
Li FF, Jiang YS, Xia MS, Sun MM, Xue B, Liu DR, Zhang XG (2009) Effect of the P/Ti ratio on the visible-light photocatalytic activity of P-doped TiO2. J Phys Chem C 113:18134–18141. https://doi.org/10.1021/jp902558z
Li F, Guan LX, Dai ML, Feng JJ, Yao MM (2013) Effects of V and Zn codoping on the microstructures and photocatalytic activities of nanocrystalline TiO2 films. Ceram Int 39:7395–7400. https://doi.org/10.1016/j.ceramint.2013.02.080
Lv J, Sheng T, Su L, Xu G, Wang D, Zheng Z, Wu Y (2013) N, S co-doped-TiO2/fly ash beads composite material and visible light photocatalytic activity. Appl Surf Sci 284:229–234. https://doi.org/10.1016/j.apsusc.2013.07.086
Ma X, Miao L, Bie S, Jiang J (2010) Synergistic effect of V/N-codoped anatase photocatalysts. Solid State Commun 150:689–692. https://doi.org/10.1016/j.ssc.2009.11.037
Mayoufi A, Nsib MF, Houas A (2014) Doping level effect on visible-light irradiation W-doped TiO2-anatase photocatalysts for Congo red photodegradation. C R Chim 17:818–823. https://doi.org/10.1016/j.crci.2014.01.019
Mendiola-Alvarez SY, Hernández-Ramírez MA, Guzmán-Mar JL, Garza-Tovar LL, Hinojosa-Reyes L (2018) Phosphorous-doped TiO2 nanoparticles: synthesis, characterization, and visible photocatalytic evaluation on sulfamethazine degradation. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-2314-6
Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A 108:1–35. https://doi.org/10.1016/S1010-6030(97)00118-4
Mohseni-Salehi MS, Taheri-Nassaj E, Hosseini-Zori M (2018) Effect of dopant (Co, Ni) concentration and hydroxyapatite compositing on photocatalytic activity of titania towards dye degradation. J Photochem Photobiol A Chem 356:57–70. https://doi.org/10.1016/j.jphotochem.2017.12.027
Mugundan S, Rajamannan B, Viruthagiri G, Shanmugam N, Gobi R, Praveen P (2015) Synthesis and characterization of undoped and cobaltdoped TiO2 nanoparticles via sol-gel technique. Appl Nanosci 5:449–456. https://doi.org/10.1007/s13204-014-0337-y
Ngaotrakanwiwat P, Saitoh S, Ohko Y, Tatsuma T, Fujishima A (2003) TiO2-phosphotungstic acid photocatalysis systems with an energy storage ability. J Electrochem Soc 150:A1405–A1407. https://doi.org/10.1149/1.1611488
Nguyen VN, Nguyen NKT, Nguyen PH (2011) Hydrothermal synthesis of Fe-doped TiO2 nanostructure photocatalyst. Adv Nat Sci Nanosci Nanotechnol 2:35014–35018. https://doi.org/10.1088/2043-6262/2/3/035014
Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425. https://doi.org/10.1016/j.rser.2005.01.009
Ohno T, Mitsui T, Matsumura M (2003) Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett 32:364–365. https://doi.org/10.1246/cl.2003.364
Pan D, Jiao J, Li Z, Guo Y, Feng CH, Liu Y, Wang L, Wu M (2015) Efficient separation of electron–hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustain Chem Eng 3(10):2405–2413. https://doi.org/10.1021/acssuschemeng.5b00771
Paola AD, Garcia-Lopez E, Ikeda S, Marci G, Ohtani B, Palmisano L (2002) Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catal Today 75:87–93. https://doi.org/10.1016/S0920-5861(02)00048-2
Papadimitriou VC, Stefanopoulos VG, Romanias MN, Papagiannakopoulos P, Sambani K, Tudose V, Kiriakidis G (2011) Determination of photo-catalytic activity of un-doped and Mn-doped TiO2 anatase powders on acetaldehyde under UV and visible light. Thin Solid Films 520:1195–1201. https://doi.org/10.1016/j.tsf.2011.07.073
Peng T, Zhao D, Song H, Yan C (2005) Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity. J Mol Catal A Chem 238:119–126. https://doi.org/10.1016/j.molcata.2005.04.066
Prasannalakshmi P, Shanmugam N (2017) Fabrication of TiO2/ZnO nanocomposites for solar energy driven photocatalysis. Mater Sci Semicond Process 61:114–124. https://doi.org/10.1016/j.mssp.2017.01.008
Pullar RC, Penn SJ, Wang X, Reaney IM, Alford NM (2009) Dielectric loss caused by oxygen vacancies in titania ceramics. J Eur Ceram Soc 29:419–424. https://doi.org/10.1016/j.jeurceramsoc.2008.06.019
Qiu J, Liu F, Yue C, Ch L, Li A (2019) A recyclable nanosheet of Mo/N-doped TiO2 nanorods decorated on carbon nanofibers for organic pollutants degradation under simulated sunlight irradiation. Chemosphere 215:280–293. https://doi.org/10.1016/j.chemosphere.2018.09.182
Rauf MA, Meetani MA, Hisaindee S (2011) An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276:13–27. https://doi.org/10.1016/j.desal.2011.03.071
Reddy KM, Manorama SV, Reddy AR (2003) Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys 78:239–245. https://doi.org/10.1016/S0254-0584(02)00343-7
Rengifo-Herrera JA, Pierzchała K, Sienkiewicz A, Forró L, Kiwi J, Pulgarin C (2009) Abatement of organics and E. coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light. Appl Catal B Environ 88:398–406. https://doi.org/10.1016/j.apcatb.2008.10.025
Rengifo-Herrera JA, Pierzchała K, Sienkiewicz A, Forro L, Kiwi J, Moser JE, Pulgarin C (2010) Synthesis, characterization, and photocatalytic activities of nanoparticulate N, S-codoped TiO2 having different surface-to-volume ratios. J Phys Chem C 114:2717–2723. https://doi.org/10.1021/jp910486f
Rizzo L, Sannino D, Vaiano V, Sacco O, Scarpa A, Pietrogiacomi D (2014) Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. coli strain in biologically treated urban wastewater. Appl Catal B Environ 144:369–378. https://doi.org/10.1016/j.apcatb.2013.07.033
Rodríguez EM, Márquez G, Tena M, Álvarez PM, Beltrán FJ (2015) Determination of main species involved in the first steps of TiO2 photocatalytic degradation of organics with the use of scavengers: The case of ofloxacin. Appl Catal B Environ 178:44–53. https://doi.org/10.1016/j.apcatb.2014.11.002
Sajjad AKL, Shamaila S, Zhang J (2012) Study of new states in visible light active W, N co-doped TiO2 photo catalyst. Mater Res Bull 47:3083–3089. https://doi.org/10.1016/j.materresbull.2012.08.032
Sharma A, Lee B-K (2015) Adsorptive/photo-catalytic process for naphthalene removal from aqueous media using in-situ nickel doped titanium nanocomposite. J Environ Manag 155:114–122. https://doi.org/10.1016/j.jenvman.2015.03.008
So CM, Cheng MY, Yu JC, Wong PK (2002) Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation. Chemosphere 46(6):905–912. https://doi.org/10.1016/S0045-6535(01)00153-9
Song W, Shen Y, Cui X, Xiong T (2015) Study on P, N, and Mo tri-doped TiO2–preparation and photocatalytic activities under visible light. J Nanosci Nanotechnol 15:7030–7034. https://doi.org/10.1166/jnn.2015.10544
Stengl V, Bakardjieva S (2010) Molybdenum-doped anatase and its extraordinary photocatalytic activity in the degradation of orange II in the UV and vis regions. J Phys Chem C 114:19308–19317. https://doi.org/10.1021/jp104271q
Sun Z, He X, Du J, Gong W (2016) Synergistic effect of photocatalysis and adsorption of nano-TiO2 self-assembled onto sulfanyl/activated carbon composite. Environ Sci Pollut Res Int 23(21):21733–21740. https://doi.org/10.1007/s11356-016-7364-z
Tian H, Ma J, Li K, Li JJ (2008) Photocatalytic degradation of methyl orange with W-doped TiO2 synthesized by a hydrothermal method. Mater Chem Phys 112:47–51. https://doi.org/10.1016/j.matchemphys.2008.05.005
Tunesi S, Anderson M (1991) Influence of chemisorption on the photodecomposition of salicylic acid and related compounds using suspended titania ceramic membranes. J Phys Chem 95(8):3399–3405. https://doi.org/10.1021/j100161a078.
Umar K, Haque MM, Muneer M, Harada T, Matsumura M (2013) Mo, Mn and La doped TiO2: synthesis, characterization and photocatalytic activity for the decolourization of three different chromophoric dyes. J Alloys Compd 578:431–438. https://doi.org/10.1016/j.jallcom.2013.06.083
Vaiano V, Sacco O, Sannino D, Ciambelli P (2015) Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts. Chem Eng J 261:3–8. https://doi.org/10.1016/j.cej.2014.02.071
Wang YW, Zhang L, Li S, Jena P (2009) Polyol-mediated synthesis of ultrafine TiO2 nanocrystals and tailored physiochemical properties by Ni doping. J Phys Chem C 113:9210–9217. https://doi.org/10.1021/jp902306h
Wang C, Shia H, Li Y (2012) Synthesis and characterization of natural zeolite supported Cr-doped TiO2 photocatalysts. Appl Surf Sci 258:4328–4333. https://doi.org/10.1016/j.apsusc.2011.12.108
Wang B, Zhang G, Leng X, Sun Z, Zheng S (2015a) Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts. J Hazard Mater 285:212–220. https://doi.org/10.1016/j.jhazmat.2014.11.031
Wang J, Zhao YF, Wang T, Li H, Li C (2015b) Photonic, and photocatalytic behavior of TiO2 mediated by Fe, CO, Ni, N doping and co-doping. Phys B Condens Matter 478:6–11. https://doi.org/10.1016/j.physb.2015.08.020
Wu X, Yin S, Dong Q, Guo C, Kimura T, Matsushita JI, Sato T (2013) Photocatalytic properties of Nd and C Codoped TiO2 with the wWhole range of visible light absorption. J Phys Chem C 117:8345–8352. https://doi.org/10.1021/jp402063n
Xia Y, Jiang Y, Li F, Xia M, Xue B, Li Y (2014) Effect of calcined atmosphere on the photocatalytic activity of P-doped TiO2. Appl Surf Sci 289:306–315. https://doi.org/10.1016/j.apsusc.2013.10.157
Yang Y, Wu Q, Guo Y, Hu C, Wang E (2005) Efficient degradation of dye pollutants on nanoporous polyoxotungstate-anatase composite under visible-light irradiation. J Mol Catal A Chem 225(2):203–212. https://doi.org/10.1016/j.molcata.2004.08.031
Yang J, Liu H, Martens WN, Frost RL (2010) Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J Phys Chem C 114:111–119. https://doi.org/10.1021/jp908548f
Yang G, Yan Z, Xiao T (2012) Low-temperature solvothermal synthesis of visible-light-responsive S-doped TiO2 nanocrystal. Appl Surf Sci 258:4016–4022. https://doi.org/10.1016/j.apsusc.2011.12.092
Yu W, Zhang J, Peng T (2016) New insight into the enhanced photocatalytic activity of N-, C- and S-doped ZnO photocatalysts. Appl Catal B Environ 181:220–227. https://doi.org/10.1016/j.apcatb.2015.07.031
Zhang G, Ding X, Hu Y, Huang B, Zhang X, Qin X, Zhou J, Xie J (2008) Photocatalytic degradation of 4BS dye by N,S-codoped TiO2 pillared montmorillonite photocatalysts under visible-light irradiation. J Phys Chem C 112:17994–17997. https://doi.org/10.1021/jp803939z
Zhang Y, Fu W, Yang H, Liu S, Sun P, Yuan M, Ma D, Zhao W, Sui Y, Li M, Li Y (2009) Synthesis and characterization of P-doped TiO2 nanotubes. Thin Solid Films 518:99–103. https://doi.org/10.1016/j.tsf.2009.06.051
Zhang W, Zhou W, Wright JH, Kim YN, Liu D, Xiao X (2014) Mn-doped TiO2 nanosheet-based spheres as anode materials for lithium-ion batteries with high performance at elevated temperatures. ACS Appl Mater Interfaces 6:7292–7300. https://doi.org/10.1021/am500604p
Zheng J, Xiong FQ, Zou M, Thomas T, Jiang H, Tian Y, Yang M (2016) Enhanced photocatalytic degradation of rhodamine B under visible light irradiation on mesoporous anatase TiO2 microspheres by codoping with W and N. Solid State Sci 54:49–53. https://doi.org/10.1016/j.solidstatesciences.2015.10.008
Zhou M, Yu J, Cheng B, Yu H (2005) Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater Chem Phys 93:159–163. https://doi.org/10.1016/j.matchemphys.2005.03.007
Zhou P, Wu J, Yu W, Zhao G, Fang G, Cao S (2014) Vectorial doping-promoting charge transfer in anatase TiO2{0 0 1} surface. Appl Surf Sci 319:167–172. https://doi.org/10.1016/j.apsusc.2014.05.045
Acknowledgments
Authors thankfully acknowledge Moulay Ismail University (Meknes-Morocco) and the European Union for providing an opportunity to Mr. Abderrahim El Mragui to work in the University of Porto, Portugal, through ERASMUS-MOBILE + doctoral mobility fellowship. The authors also thank the CEMUP (University of Porto) for the XPS and SEM-EDS analyses.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Suresh Pillai
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOCX 763 kb)
Rights and permissions
About this article
Cite this article
El Mragui, A., Zegaoui, O., Daou, I. et al. Preparation, characterization, and photocatalytic activity under UV and visible light of Co, Mn, and Ni mono-doped and (P,Mo) and (P,W) co-doped TiO2 nanoparticles: a comparative study. Environ Sci Pollut Res 28, 25130–25145 (2021). https://doi.org/10.1007/s11356-019-04754-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-019-04754-6