Phosphorous in the environment: characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems

Abstract

Phosphorus (P), an essential element for living cells, is present in different soluble and adsorbed chemical forms found in soil, sediment, and water. Most species are generally immobile and easily adsorbed onto soil particles. However, P is a major concern owing to its serious environmental effects (e.g., eutrophication, scale formation) when found in excess in natural or engineered environments. Commercial chemicals, fertilizers, sewage effluent, animal manure, and agricultural waste are the major sources of P pollution. But there is limited P resources worldwide. Therefore, the fate, effects, and transport of P in association with its removal, treatment, and recycling in natural and engineered systems are important. P removal and recycling technologies utilize different types of physical, biological, and chemical processes. Moreover, P minerals (struvite, vivianite, etc.) can precipitate and form scales in drinking water and wastewater systems. Hence, P minerals (e.g., struvite, vivianite etc.) are problems when left uncontrolled and unmonitored although their recovery is beneficial (e.g., slow release fertilizers, sustainable P sources, soil enhancers). Sources like wastewater, human waste, waste nutrient solution, etc. can be used for P recycling. This review paper extensively summarizes the importance and distribution of P in different environmental compartments, the effects of P in natural and engineered systems, P removal mechanisms through treatment, and recycling technologies specially focusing on various types of phosphate mineral precipitation. In particular, the factors controlling mineral (e.g., struvite and vivianite) precipitation in natural and engineered systems are also discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aage H, Andersen B, Blom A, Jensen I (1997) The solubility of struvite. J Radioanal Nucl Chem 223(1–2):213–215

    CAS  Article  Google Scholar 

  2. Acelas NY, Flórez E, López D (2015) Phosphorus recovery through struvite precipitation from wastewater: effect of the competitive ions. Desalin Water Treat 54(9):2468–2479

    CAS  Article  Google Scholar 

  3. Adnan A, Koch FA, Mavinic DS (2003a) Pilot-scale study of phosphorus recovery through struvite crystallization—II: applying in-reactor supersaturation ratio as a process control parameter. J Environ Eng Sci 2(6):473–483

    CAS  Article  Google Scholar 

  4. Adnan A, Mavinic DS, Koch FA (2003b) Pilot-scale study of phosphorus recovery through struvite crystallization examining the process feasibility. J Environ Eng Sci 2(5):315–324

    CAS  Article  Google Scholar 

  5. Agric UD (1978) Improving soils with organic wastes. USDA, Washington, DC

    Google Scholar 

  6. Alexander G, Stevens R (1976) Per capita phosphorus loading from domestic sewage. Water Res 10(9):757–764

    CAS  Article  Google Scholar 

  7. Ali, M. 2005. Struvite crystallization from nutrient rich wastewater, Vol. Doctoral dissertation James Cook University

  8. Amjad Z, Demadis KD (2015) Mineral scales and deposits: scientific and technological approaches. Elsevier

  9. Andrade A, Schuiling R (2001) The chemistry of struvite crystallization. Min J 23:5–6

    Google Scholar 

  10. Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2000) Handbook of mineralogy, volume IV, arsenates, phosphates, vanadates. 1–680, Mineralogical Society of America, Chantilly, Virginia

  11. Azam H (2012) Iron reduction mediated increases in carbon oxidation and phosphorus precipitation in on-site wastewater systems, Vol. Doctoral dissertation University of Illinois at Urbana-Champaign

  12. Azam HM, Finneran KT (2014) Fe (III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2·8H2O) in septic system wastewater. Chemosphere 97:1–9

  13. Babić-Ivančić V, Kontrec J, Kralj D, Brečević L (2002) Precipitation diagrams of struvite and dissolution kinetics of different struvite morphologies. Croat Chem Acta 75(1):89–106

    Google Scholar 

  14. Badgery-Parker J (2002) Managing waste water from intensive horticulture: a wetland system. 2nd ed.

  15. Bassett, H., Bedwell, W.L. 1933. 210. Studies of phosphates. Part I. Ammonium magnesium phosphate and related compounds. Journal of the Chemical Society (Resumed), 854–871

  16. Batstone D (2009) Towards a generalised physicochemical modelling framework. Rev Environ Sci Biotechnol 8(2):113–114

    Article  Google Scholar 

  17. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi S, Pavlostathis S, Rozzi A, Sanders W, Siegrist H, Vavilin V (2002) The IWA anaerobic digestion model no 1 (ADM1). Water Sci Technol 45(10):65–73

    CAS  Article  Google Scholar 

  18. Baturin G (2003) Phosphorus cycle in the ocean. Lithol Miner Resour 38(2):101–119

    CAS  Article  Google Scholar 

  19. Becher KD, Kalkhoff SJ, Schnoebelen DJ, Barnes KK, and Miller VE (2001) Water-quality assessment of the eastern Iowa basins—nitrogen, phosphorus, suspended sediment, and organic carbon in surface water, 1996–98

  20. Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press

  21. Berg U, Ehbrecht A, Röhm E, Weidler P, Nüesch R (2007) Impact of calcite on phosphorus removal and recovery from wastewater using CSH-filled fixed bed filters. J Residuals Sci Technol 4(2):73–81

    CAS  Google Scholar 

  22. Bhuiyan M, Mavinic D, Beckie R (2007) A solubility and thermodynamic study of struvite. Environ Technol 28(9):1015–1026

    CAS  Article  Google Scholar 

  23. Bhuiyan MIH, Mavinic D, Koch F (2008) Thermal decomposition of struvite and its phase transition. Chemosphere 70(8):1347–1356

    CAS  Article  Google Scholar 

  24. Blöcher C, Niewersch C, Schröder H, Gebhardt W, Melin T (2009) Optimierte Phosphor-Rückgewinnung aus Klärschlämmen durch ein Hybridverfahren aus Niederdruck-Nassoxidation und Nanofiltration (Verbundprojekt PHOXNAN). Final report of BMBF project 02WA0796/97/98

  25. Boers P, De Bles F (1991) Ion concentrations in interstitial water as indicators for phosphorus release processes and reactions. Water Res 25(5):591–598

    CAS  Article  Google Scholar 

  26. Boistelle R, Abbona F, Madsen HL (1983) On the transformation of struvite into newberyite in aqueous systems. Phys Chem Miner 9(5):216–222

    CAS  Article  Google Scholar 

  27. Bouropoulos NC, Koutsoukos PG (2000) Spontaneous precipitation of struvite from aqueous solutions. J Cryst Growth 213(3–4):381–388

    CAS  Article  Google Scholar 

  28. Bouwman A, Lee D, Asman W, Dentener F, Van Der Hoek K, Olivier J (1997) A global high-resolution emission inventory for ammonia. Glob Biogeochem Cycles 11(4):561–587

    CAS  Article  Google Scholar 

  29. Bowen HJM (1979) Environmental chemistry of the elements. Academic

  30. Bowker RP, Stensel HD (1990) Phosphorus removal from wastewater. Noyes Data Corp

  31. Box GE, Draper NR (1987) Empirical model-building and response surfaces. Wiley

  32. Boyd CE, Tucker CS (2012) Pond aquaculture water quality management. Springer Science and Business Media

  33. Bridger G, Salutsky ML, Starostka R (1962) Micronutrient sources, metal ammonium phosphates as fertilizers. J Agric Food Chem 10(3):181–188

    CAS  Article  Google Scholar 

  34. Britton A, Sacluti F, Oldham W, Mohammed A, Mavinic D, Koch F (2007) Value from waste–struvite recovery at the city of Edmonton’s gold bar WWTP. Proceedings of the IWA Specialist Conference, (SC’07), Moncton, New Brunswick, Canada. Citeseer

  35. Brogan J, Crowe M, Carty G (2001) Developing a national phosphorus balance for agriculture in Ireland: a discussion document. Environmental Protection Agency

  36. Bruland KW (1983) Trace elements in sea water. In: Chemical oceanography, (Ed.) Riley, J.P. and Chester, R. (eds), London: Academic, pp. 157–220

  37. Burkart MR, Simpkins WW, Morrow AJ, Gannon JM (2004) Occurrence of total dissolved phosphorus in unconsolidated aquifers and aquitards in Iowa. JAWRA J Am Water Resour Assoc 40(3):827–834

    CAS  Article  Google Scholar 

  38. Cao X, Harris W (2007) Carbonate and magnesium interactive effect on calcium phosphate precipitation. Environ Sci Technol 42(2):436–442

    Article  CAS  Google Scholar 

  39. Cardew P (2009) Measuring the benefit of orthophosphate treatment on lead in drinking water. J Water Health 7(1):123–131

    CAS  Article  Google Scholar 

  40. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568

    Article  Google Scholar 

  41. Carus-Corporation (2016) Phosphorous discharge limits and drinking water corrosion control plans http://www.caruscorporation.com/page/home/news/phosphates-in-drinking-water

  42. Çelen I, Buchanan JR, Burns RT, Robinson RB, Raman DR (2007) Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure. Water Res 41(8):1689–1696

    Article  CAS  Google Scholar 

  43. Cervantes FJ (2009) Environmental technologies to treat nitrogen pollution. IWA Publishing

  44. Chauhan CK, Joshi MJ (2014) Growth and characterization of struvite-Na crystals. J Cryst Growth 401:221–226

    CAS  Article  Google Scholar 

  45. Chirmuley D (1994) Struvite precipitation in WWPTS: causes and solutions. Water-Melbourne Then Artarmon 21:21–21

    CAS  Google Scholar 

  46. Corbridge DEC (2013) Phosphorus: chemistry, biochemistry and technology, sixth edn. CRC

  47. Cordell D, White S (2011) Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3(10):2027–2049

    Article  Google Scholar 

  48. Cosgrove D (1967) Metabolism of organic phosphates in soil. Soil Biochemistry 1:216–228

    Google Scholar 

  49. Cosgrove DJ, Irving G (1980) Inositol phosphates: their chemistry, biochemistry, and physiology. Elsevier Science and Technology

  50. Dana ES (1949) A textbook of mineralogy. Wiley, New York

    Google Scholar 

  51. Danvirutai C, Noisong P, Youngme S (2010) Some thermodynamic functions and kinetics of thermal decomposition of NH4MnPO4. H2O in nitrogen atmosphere. J Therm Anal Calorim 100(1):117–124

  52. Darwish M, Aris A, Puteh MH, Abideen MZ, Othman MN (2016) Ammonium-nitrogen recovery from wastewater by struvite crystallization technology. Sep Purif Rev 45(4):261–274

    CAS  Article  Google Scholar 

  53. Dhakal, S. 2008. A laboratory study of struvite precipitation for phosphorus removal from concentrated animal feeding operation wastewater

    Google Scholar 

  54. Dill H (2015) The Hagendorf-Pleystein Province: the center of pegmatites in an ensialic orogen. Springer

  55. Dockhorn T (2009) About the economy of phosphorus recovery. In: Proceedings of international conference on nutrient recovery from wastewater streams, Vancouver, Canada. IWA Publishing, London, UK, ISBN 9781843392323

  56. Doyle JD, Oldring K, Churchley J, Price C, Parsons SA (2003) Chemical control of struvite precipitation. J Environ Eng 129(5):419–426

    CAS  Article  Google Scholar 

  57. Doyle JD, Parsons SA (2002) Struvite formation, control and recovery. Water Res 36(16):3925–3940

    CAS  Article  Google Scholar 

  58. Durrant A, Scrimshaw M, Stratful I, Lester J (1999) Review of the feasibility of recovering phosphate from wastewater for use as a raw material by the phosphate industry. Environ Technol 20(7):749–758

    Article  Google Scholar 

  59. Edwards AC, Withers PJA (2007) Soil phosphorus management and water quality: a UK perspective. Soil Use Manag 14:124–130. https://doi.org/10.1111/j.1475-2743.1998.tb00630.x

    Article  Google Scholar 

  60. Egle L, Rechberger H, Krampe J, Zessner M (2016) Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci Total Environ 571:522–542

    CAS  Article  Google Scholar 

  61. Ehama M, Hashihama F, Kinouchi S, Kanda J, Saito H (2016) Sensitive determination of total particulate phosphorus and particulate inorganic phosphorus in seawater using liquid waveguide spectrophotometry. Talanta 153:66–70

    CAS  Article  Google Scholar 

  62. Fattah, K. 2012. Finding nutrient-related problems in wastewater treatment plants. International Conference on Environmental, Biomedical and Biotechnology IPCBEE

  63. Fattah KP (2010) Development of control strategies for the operation of a struvite crystallization process. University of British Columbia

  64. Fixen P, Ludwick A, Olsen S (1983) Phosphorus and potassium fertilization of irrigated alfalfa on calcareous soils: II. Soil phosphorus solubility relationships 1. Soil Sci Soc Am J 47(1):112–117

    CAS  Article  Google Scholar 

  65. Frossard E, Bauer J, Lothe F (1997) Evidence of vivianite in FeSO4-flocculated sludges. Water Res 31(10):2449–2454

  66. Fuller WH (1972) Phosphorus: element and geochemistry. Ed. W.R. Fairbridge. The encyclopedia of geochemistry and environmental sciences, Encyclopedia of Earth Science series, IVA. New York; Van Nostrand Reinhold, 942–946

  67. Gagnon V, Maltais-Landry G, Puigagut J, Chazarenc F, Brisson J (2010) Treatment of hydroponics wastewater using constructed wetlands in winter conditions. Water Air Soil Pollut 212(1–4):483–490

    CAS  Article  Google Scholar 

  68. Galbraith S, Schneider P (2009) A review of struvite nucleation studies. International Conference on Nutrient Recovery from Wastewater Streams: May 10–13, 2009, the Westin Bayshore Hotel and Resort, Vancouver, British Columbia, Canada. IWA Publishing. pp. 69

  69. Galleries, A. 2011. Amethyst galleries’ mineral gallery

    Google Scholar 

  70. Gangoli N, Thodos G (1973) Phosphate adsorption studies. Journal (Water Pollution Control Federation):842–849

  71. Girard JE (2013) Principles of environmental chemistry. Jones and Bartlett Publishers

  72. Glasauer S, Weidler PG, Langley S, Beveridge TJ (2003) Controls on Fe reduction and mineral formation by a subsurface bacterium. Geochim Cosmochim Acta 67(7):1277–1288

    CAS  Article  Google Scholar 

  73. Goldberg S (1992) Use of surface complexation models in soil chemical systems. Adv Agron 47:233–329

    CAS  Article  Google Scholar 

  74. Graeser S, Postl W, Bojar H-P, Berlepsch P, Armbruster T, Raber T, Ettinger K, Walter F (2008) Struvite-(K), KMgPO4· 6H2O, the potassium equivalent of struvite—a new mineral. Eur J Mineral 20(4):629–633

    CAS  Article  Google Scholar 

  75. Green, C., Johnson, P., Allen, V., Crossland, S. 2004. Treatment technologies for phosphorus removal from water derived from cattle feed yards. Plant and Soil Science Department and Agricultural and Applied Economics Department, Texas Tech University

  76. Gupta S, Häni H, Schindler P (1979) Factors affecting the degree of phosphate-removal in the system FeCl3-orthophosphate and nature of the precipitates. Z Pflanzenernähr Bodenkd 142(5):705–718

    CAS  Article  Google Scholar 

  77. Han DS, Abdel-Wahab A, Batchelor B (2010) Surface complexation modeling of arsenic (III) and arsenic (V) adsorption onto nanoporous titania adsorbents (NTAs). J Colloid Interface Sci 348(2):591–599

    CAS  Article  Google Scholar 

  78. Hao X-D, Wang C-C, Lan L, Van Loosdrecht M (2008) Struvite formation, analytical methods and effects of pH and Ca2+. Water Sci Technol 58(8):1687–1692

    Article  Google Scholar 

  79. Heinzmann B, Betriebe BW (2001) Phosphorus recovery in wastewater treatment plants. Second International Conference

  80. Henze M, Gujer W, Mino T, Van Loosdrecht M (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Publishing

  81. Hislop H (2007) The nutrient cycle: closing the loop. Green Aliance

  82. Hizal J, Apak R (2006) Modeling of copper (II) and lead (II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid. J Colloid Interface Sci 295(1):1–13

    CAS  Article  Google Scholar 

  83. Holman IP, Howden NJ, Bellamy P, Willby N, Whelan MJ, Rivas-Casado M (2010) An assessment of the risk to surface water ecosystems of groundwater P in the UK and Ireland. Sci Total Environ 408(8):1847–1857

    CAS  Article  Google Scholar 

  84. Holtan H, Kamp-Nielsen L, Stuanes A (1988) Phosphorus in soil, water and sediment: an overview. In: Phosphorus in freshwater ecosystems, Springer, pp. 19–34

  85. Housecroft C, Sharpe A (2008) The group 16 elements. Inorganic chemistry. 3rd ed. New Jersey: Pearson, 520

  86. Hultman B, Levlin E, Stark K (2001) Phosphorus recovery from sewage sludges: research and experiences in Nordic countries. SCOPE 41:29–33

    Google Scholar 

  87. Isherwood K (2000) Mineral fertilizer use and the environment by international fertilizer industry association. Revised Edition, Paris

    Google Scholar 

  88. Jaffer Y, Clark T, Pearce P, Parsons S (2002) Potential phosphorus recovery by struvite formation. Water Res 36(7):1834–1842

    CAS  Article  Google Scholar 

  89. Jenkins D, Ferguson JF, Menar AB (1971) Chemical processes for phosphate removal. Water Res 5(7):369–389

    CAS  Article  Google Scholar 

  90. Jenkins D, Hermanowicz S (1991) Principles of chemical phosphate removal. In: Phosphorous and nitrogen removal from municipal wastewater: principles and practice. 2nd ed. Lewis, Boca Raton, Florida. 1991. p 91–110. 15 fig, 4 tab, 23 ref.

  91. Johnsson MS-A, Nancollas GH (1992) The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol Med 3(1):61–82

    CAS  Article  Google Scholar 

  92. Johnston A, Steen I (2000) Understanding phosphorus and its use in agriculture. European Fertilizer Manufacturers Association

  93. Jonard M, Fürst A, Verstraeten A, Thimonier A, Timmermann V, Potočić N, Waldner P, Benham S, Hansen K, Merilä P (2015) Tree mineral nutrition is deteriorating in Europe. Glob Chang Biol 21(1):418–430

    Article  Google Scholar 

  94. Kampf AR, Adams PM, Barwood H, Nash BP (2017) Fluorwavellite, Al3 (PO4) 2 (OH) 2F· 5H2O, the fluorine analog of wavellite. Am Mineral 102(4):909–915

    Article  Google Scholar 

  95. Kataki S, West H, Clarke M, Baruah DC (2016) Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour Conserv Recycl 107:142–156

    Article  Google Scholar 

  96. Kołodyńska D (2011a) Chelating agents of a new generation as an alternative to conventional chelators for heavy metal ions removal from different waste waters. INTECH Open Access Publisher

  97. Kołodyńska D (2011b) Chelating agents of a new generation as an alternative to conventional chelators for heavy metal ions removal from different waste waters. In: Expanding issues in desalination, InTech

  98. Koralewska J, Piotrowski K, Wierzbowska B, Matynia A (2009) Kinetics of reaction-crystallization of struvite in the continuous draft tube magma type crystallizers—influence of different internal hydrodynamics. Chin J Chem Eng 17(2):330–339

    CAS  Article  Google Scholar 

  99. Kozik A, Hutnik N, Matynia A, Gluzinska J, Piotrowski K (2011) Recovery of phosphate (V) ions from liquid waste solutions containing organic impurities. Chemik 65(7):675–686

    CAS  Google Scholar 

  100. Kwon MJ, Boyanov MI, Antonopoulos DA, Brulc JM, Johnston ER, Skinner KA, Kemner KM, O’Loughlin EJ (2014) Effects of dissimilatory sulfate reduction on FeIII (hydr)oxide reduction and microbial community development. Geochim Cosmochim Acta 129:177–190

  101. Kwon MJ, O’Loughlin EJ, Boyanov MI, Brulc JM, Johnston ER, Kemner KM, Antonopoulos DA (2016) Impact of organic carbon electron donors on microbial community development under iron- and sulfate-reducing conditions. PLoS One 11(1):e0146689

    Article  CAS  Google Scholar 

  102. Lavelle P, Dugdale R, Scholes R, Berhe A, Carpenter E, Codispoti L, Izac A, Lemoalle J, Luizao F, Treguer P (2005) Nutrient cycling. In: Ecosystems and human well-being: current state and trends: findings of the condition and trends working group. Island Press, Washington

    Google Scholar 

  103. Lazarova V, Savoye P, Janex M, Blatchley E, Pommepuy M (1999) Advanced wastewater disinfection technologies: state of the art and perspectives. Water Sci Technol 40(4–5):203–213

    CAS  Article  Google Scholar 

  104. Le Corre KS, Valsami-Jones E, Hobbs P, Jefferson B, Parsons SA (2007) Struvite crystallisation and recovery using a stainless steel structure as a seed material. Water Res 41(11):2449–2456

    Article  CAS  Google Scholar 

  105. Lee J, Rahman M, Ra C (2009) Dose effects of Mg and PO4 sources on the composting of swine manure. J Hazard Mater 169(1):801–807

    CAS  Article  Google Scholar 

  106. Lee JY, Rahman A, Behrens J, Brennan C, Ham B, Kim HS, Nho CW, Yun S-T, Azam H, Kwon MJ (2018) Nutrient removal from hydroponic wastewater by a microbial consortium and a culture of Paracercomonas saepenatans. New Biotechnol 41:15–24

    CAS  Article  Google Scholar 

  107. Levin GV, Shapiro J (1965) Metabolic uptake of phosphorus by wastewater organisms. Journal (Water Pollution Control Federation):800–821

  108. Li Z, Ren X, Zuo J, Liu Y, Duan E, Yang J, Chen P, Wang Y (2012) Struvite precipitation for ammonia nitrogen removal in 7-aminocephalosporanic acid wastewater. Molecules 17(2):2126–2139

    CAS  Article  Google Scholar 

  109. Lindsay WL (1979) Chemical equilibria in soils. Wiley

  110. Liu Y, Kumar S, Kwag JH, Ra C (2013) Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review. J Chem Technol Biotechnol 88(2):181–189

    CAS  Article  Google Scholar 

  111. Lowe EF, Battoe LE, Stites DL, Coveney MF (1992) Particulate phosphorus removal via wetland filtration: an examination of potential for hypertrophic lake restoration. Environ Manag 16(1):67–74

    Article  Google Scholar 

  112. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press on Demand

  113. Ma N, Rouff AA (2012) Influence of pH and oxidation state on the interaction of arsenic with struvite during mineral formation. Environ Sci Technol 46(16):8791–8798

    CAS  Article  Google Scholar 

  114. Madsen HEL, Hansen HCB (2014) Kinetics of crystal growth of vivianite, Fe3(PO4)2 8H2O, from solution at 25, 35 and 45° C. J Cryst Growth 401:82–86

    Article  CAS  Google Scholar 

  115. Matynia A, Wierzbowska B, Hutnik N, Mazienczuk A, Kozik A, Piotrowski K (2013) Separation of struvite from mineral fertilizer industry wastewater. Procedia Environ Sci 18:766–775

    CAS  Article  Google Scholar 

  116. McDowell R, Sharpley A, Folmar G (2003) Modification of phosphorus export from an eastern USA catchment by fluvial sediment and phosphorus inputs. Agric Ecosyst Environ 99(1):187–199

    CAS  Article  Google Scholar 

  117. McGowan G, Prangnell J (2006) The significance of vivianite in archaeological settings. Geoarchaeology 21(1):93–111

    Article  Google Scholar 

  118. Mekmene O, Quillard S, Rouillon T, Bouler J-M, Piot M, Gaucheron F (2009) Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions. Dairy Sci Technol 89(3–4):301–316

    CAS  Article  Google Scholar 

  119. Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci 282(4):401–450

    CAS  Article  Google Scholar 

  120. Meyers RH, Montgomery DC (2002) Response surface methodology. Process and product optimisation using design experiments, second edn. Wiley, New York, NY

  121. Miot J, Benzerara K, Morin G, Bernard S, Beyssac O, Larquet E, Kappler A, Guyot F (2009) Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology 7(3):373–384

    CAS  Article  Google Scholar 

  122. Möller, G. 2006. Absolute (1000 fold) phosphorus removal: performance, mechanisms and engineering analysis of iron-based reactive filtration and coupled CEPT at the Hayden, ID WWTP. Session P2 in WERF

  123. Montag D, Pinnekamp J, Dittrich C, Rath W, Schmidt M, Pfennig A, Seyfried A, Grömping M, van Norden H, Doetsch P (2011) Rückgewinnung von Phosphor aus Klärschlammasche mittels des nasschemischen PASCH-Verfahrens. in: Gewässerschutz-Wasser-Abwasser 228. Förderinitiative “Kreislaufwirtschaft für Pflanzennährstoffe, insbesondere Phosphor”. Schlusspräsentation. Aachen. Report

  124. Montag DM, Pinnekamp J (2008) Phosphorrückgewinnung bei der Abwasserreinigung: Entwicklung eines Verfahrens zur Integration in kommunale Kläranlagen. Lehrstuhl für Siedlungswasserwirtschaft und Siedlungsabfallwirtschaft und Institut für Siedlungswasserwirtschaft

  125. Montgomery JM, Engineers C (1985) Water treatment principles and design. Wiley, New York

    Google Scholar 

  126. Morel F, Hering J (1993) Principles and applications of aquatic chemistry. Wiley, New York

    Google Scholar 

  127. Morf L (2012) Phosphor aus Klärschlamm—Strategie des Kanton Zürichs und der Schweiz (Phosphorus from sewage sludge—the strategy of the Canton of Zürich and Switzerland). Flessner Tagung Wasser-und Abfallwirtschaft:14–16

  128. Morse G, Brett S, Guy J, Lester J (1998a) Phosphorus removal and recovery technologies. Sci Total Environ 212(1):69–81

    CAS  Article  Google Scholar 

  129. Morse G, Brett S, Guy J, Lester J (1998b) Review: Phosphorus removal and recovery technologies. Sci Total Environ 212(1):69–81

    CAS  Article  Google Scholar 

  130. Morton SC, Edwards M (2005) Reduced phosphorus compounds in the environment. Crit Rev Environ Sci Technol 35(4):333–364

    CAS  Article  Google Scholar 

  131. Morton SC, Glindemann D, Edwards MA (2003) Phosphates, phosphites, and phosphides in environmental samples. Environ Sci Technol 37(6):1169–1174

    CAS  Article  Google Scholar 

  132. Muryanto S, Bayuseno A (2014) Influence of Cu2+ and Zn2+ as additives on crystallization kinetics and morphology of struvite. Powder Technol 253:602–607

    CAS  Article  Google Scholar 

  133. Nelson NO, Mikkelsen RL, Hesterberg DL (2003) Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg: P ratio and determination of rate constant. Bioresour Technol 89(3):229–236

    CAS  Article  Google Scholar 

  134. Nolan BT, Stoner JD (2000) Nutrients in groundwaters of the conterminous United States, 1992–1995. Environ Sci Technol 34(7):1156–1165

    CAS  Article  Google Scholar 

  135. Nörtemann B (2005) Biodegradation of chelating agents: EDTA, DTPA, PDTA, NTA, and EDDS. Biogeochemistry of chelating agents, chapter 8, pp 150–170, https://doi.org/10.1021/bk-2005-0910. ch008, ACS Symposium Series, Vol. 910

  136. Nowack B (2003) Environmental chemistry of phosphonates. Water Res 37(11):2533–2546

    CAS  Article  Google Scholar 

  137. Nowack, B., VanBriesen, J.M. 2005. Chelating agents in the environment. Biogeochemistry of chelating agents, 1–18

  138. Nowak B, Perutka L, Aschenbrenner P, Kraus P, Rechberger H, Winter F (2011) Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash. Waste Manag 31(6):1285–1291

    CAS  Article  Google Scholar 

  139. Nriagu J, Dell C (1974) Diagenetic formation of iron phosphates in recent lake sediments. Am Mineral 59:934–946

    CAS  Google Scholar 

  140. Nriagu JO (1984) Phosphate minerals: their properties and general modes of occurrence. In: Phosphate minerals, Springer, pp. 1–136

  141. Nriagu JO (1972) Stability of vivianite and ion-pair formation in the system Fe3(PO4)2-H3PO4-H2O. Geochim Cosmochim Acta 36(4):459–470

    CAS  Article  Google Scholar 

  142. Nunes, A.P.L. 2012. Estudos electrocineticos e de flotabilidade de wavellita. turquesa, senegalita e apatita, Vol. Tese de Doutorado, Escola de Engenharia da UFMG

  143. Nunes APL, Peres AEC, De Araujo AC, Valadão GES (2011) Electrokinetic properties of wavellite and its floatability with cationic and anionic collectors. J Colloid Interface Sci 361(2):632–638

    CAS  Article  Google Scholar 

  144. O’Connell DW, Jensen MM, Jakobsen R, Thamdrup B, Andersen TJ, Kovacs A, Hansen HCB (2015) Vivianite formation and its role in phosphorus retention in Lake Ørn, Denmark. Chem Geol 409:42–53

    Article  CAS  Google Scholar 

  145. Oehmen A, Saunders AM, Vives MT, Yuan Z, Keller J (2006) Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. J Biotechnol 123(1):22–32

    CAS  Article  Google Scholar 

  146. Ohashi S, Van Wazer JR (1959) Structure and properties of the condensed phosphates. XIV. Calcium polyphosphates. J Am Chem Soc 81(4):830–832

    CAS  Article  Google Scholar 

  147. Ohlinger K, Young T, Schroeder E (1998) Predicting struvite formation in digestion. Water Res 32(12):3607–3614

    CAS  Article  Google Scholar 

  148. Ohlinger KN, Young TM, Schroeder ED (1999) Kinetics effects on preferential struvite accumulation in wastewater. J Environ Eng 125(8):730–737

    CAS  Article  Google Scholar 

  149. Oliver RL, Ganf GG (2000) Freshwater blooms. In: The ecology of cyanobacteria, Springer, pp. 149–194

  150. Panasiuk O (2010a) Phosphorus removal and recovery from wastewater using magnetite

  151. Panasiuk O (2010b) Phosphorus removal and recovery from wastewater using magnetite

  152. Park J, Craggs R, Sukias J (2008) Treatment of hydroponic wastewater by denitrification filters using plant prunings as the organic carbon source. Bioresour Technol 99(8):2711–2716

    CAS  Article  Google Scholar 

  153. Parkhurst DL, Stollenwerk KG, Colman JA (2003) Reactive-transport simulation of phosphorus in the sewage plume at the Massachusetts Military Reservation, Cape Cod, Massachusetts. US Department of the Interior, US Geological Survey

  154. Paul EA, Clark PF (1996) Soil microbiology and biochemistry. Academic, San Diego, CA

    Google Scholar 

  155. Pereira AC, Papini RM (2015) Processes for phosphorus removal from iron ore—a review. Rem: Revista Escola de Minas 68(3):331–335

    Google Scholar 

  156. Pierzynski GM, McDowell RW (2005) Chemistry, cycling, and potential movement of inorganic phosphorus in soils. Phosphorus: agriculture and the environment (phosphorusagric), 53–86

  157. Prasad M (2013) A literature review on the availability of phosphorus from compost in relation to the nitrate regulations SI378 of 2006. Small scale study report prepared for the Environmental Protection Agency by Cre-composting Association of Ireland, STRIVE-program, Republic of Ireland

  158. Prywer J, Olszynski M (2013) Influence of disodium EDTA on the nucleation and growth of struvite and carbonate apatite. J Cryst Growth 375:108–114

    CAS  Article  Google Scholar 

  159. Rahman MM, Liu Y, Kwag J-H, Ra C (2011) Recovery of struvite from animal wastewater and its nutrient leaching loss in soil. J Hazard Mater 186(2):2026–2030

    CAS  Article  Google Scholar 

  160. Rahman MM, Salleh MAM, Rashid U, Ahsan A, Hossain MM, Ra CS (2014) Production of slow release crystal fertilizer from wastewaters through struvite crystallization—a review. Arab J Chem 7(1):139–155

    CAS  Article  Google Scholar 

  161. Ralph J, Chau I (2014) Mindat. org—the mineral and locality database

  162. Rayner-Canham G, Overton T (2003) Descriptive inorganic chemistry. Macmillan

  163. Reddy KR, O’Connor GA, Schelske CL (1999) Phosphorus biogeochemistry of sub-tropical ecosystems. CRC

  164. Reimann C, de Caritat P (1998) Chemical elements in the environment—factsheets for the geochemist and environmental scientist. Springer, Berlin, p 1998

    Google Scholar 

  165. Rittmann BE, Mayer B, Westerhoff P, Edwards M (2011) Capturing the lost phosphorus. Chemosphere 84(6):846–853

    CAS  Article  Google Scholar 

  166. Robertson W (2003) Enhanced attenuation of septic system phosphate in noncalcareous sediments. Ground Water 41(1):48–56

    CAS  Article  Google Scholar 

  167. Ronteltap M, Maurer M, Gujer W (2007) Struvite precipitation thermodynamics in source-separated urine. Water Res 41(5):977–984

    CAS  Article  Google Scholar 

  168. Rosenqvist IT (1970) Formation of vivianite in Holocene clay sediments. Lithos 3(4):327–334

    CAS  Article  Google Scholar 

  169. Rothe M, Frederichs T, Eder M, Kleeberg A, Hupfer M (2014) Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment: a novel analytical approach. Biogeosciences 11(18):5169–5180

    Article  Google Scholar 

  170. Rothe M, Kleeberg A, Hupfer M (2016) The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth Sci Rev 158:51–64

    CAS  Article  Google Scholar 

  171. Rouff AA (2012) Sorption of chromium with struvite during phosphorus recovery. Environ Sci Technol 46(22):12493–12501

    CAS  Article  Google Scholar 

  172. Rouff AA (2013) Temperature-dependent phosphorus precipitation and chromium removal from struvite-saturated solutions. J Colloid Interface Sci 392:343–348

    CAS  Article  Google Scholar 

  173. Rouff AA, Ramlogan MV, Rabinovich A (2016) Synergistic removal of zinc and copper in greenhouse waste effluent by struvite. ACS Sustainable Chemistry and Engineering 4(3):1319–1327

    CAS  Article  Google Scholar 

  174. Rouzies D, Millet J (1993) Mössbauer study of synthetic oxidized vivianite at room temperature. Hyperfine Interactions 77(1):19–28

    CAS  Article  Google Scholar 

  175. Rybicki S (1997) Advances wastewater treatment: phosphorus removal from wastewater. Royal Institute of Technology

  176. Rybicki SM (1998) New technologies of phosphorus removal from wastewater. Proc. Of a Polish-Swedish Seminar, Joint Polish Swedish Reports, Report

  177. Ryu H-D, Kim D, Lee S-I (2008) Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater. J Hazard Mater 156(1–3):163–169

    CAS  Article  Google Scholar 

  178. Sabbag H, Brenner A, Nikolski A, Borojovich EJ (2015) Prevention and control of struvite and calcium phosphate precipitation by chelating agents. Desalin Water Treat 55(1):61–69

    CAS  Article  Google Scholar 

  179. Sakthivel SR, Tilley E, Udert KM (2012) Wood ash as a magnesium source for phosphorus recovery from source-separated urine. Science of the Total Environment, 419, 68–75

  180. Savenko V, Zakharova E (1997) Main principles of the behavior of phosphorus in river discharge. Vodnye Resursy 24(2):159–168

    Google Scholar 

  181. Scheidig K, Mallon J, Schaaf M, Riedl R (2013) P-Recycling-Dünger aus der Schmelzvergasung von Klärschlamm und Klärschlammasche. KA–Korrespondenz Abwasser, Abfall 10:845–850

    Google Scholar 

  182. Sedlak RI (1991) Phosphorus and nitrogen removal from municipal wastewater: principles and practice. Second edition. CRC

  183. Serrano S, O’Day PA, Vlassopoulos D, García-González MT, Garrido F (2009) A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils. Geochim Cosmochim Acta 73(3):543–558

    CAS  Article  Google Scholar 

  184. Sharp R, Vadiveloo E, Fergen R, Moncholi M, Pitt P, Wankmuller D, Latimer R (2013) A theoretical and practical evaluation of struvite control and recovery. Water Environ Res 85(8):675–686

    CAS  Article  Google Scholar 

  185. Sharpley A, Foy B, Withers P (2000) Practical and innovative measures for the control of agricultural phosphorus losses to water: an overview. J Environ Qual 29(1):1–9

    CAS  Article  Google Scholar 

  186. Shin H. S., Lee S. M. (1998) Environmental Technology 19(3):283-290 https://doi.org/10.1080/09593331908616682 Removal of Nutrients in Wastewater by using Magnesium Salts

  187. Shu L, Schneider P, Jegatheesan V, Johnson J (2006) An economic evaluation of phosphorus recovery as struvite from digester supernatant, Bioresource Technology, Volume 97, Issue 17, November 2006, Pages 2211–2216. https://www.sciencedirect.com/science/article/pii/S0960852405005304

  188. Sims, J.T. 1998. Soil testing for phosphorus: environmental uses and implications. So. Coop. Series Bull. No. 389. Univ. Delaware, Newark, DE

  189. Smil V (1999) Nitrogen in crop production: an account of global flows. Glob Biogeochem Cycles 13(2):647–662

    CAS  Article  Google Scholar 

  190. Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25(1):53–88

    Article  Google Scholar 

  191. Sø HU, Postma D, Jakobsen R, Larsen F (2011) Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling. Geochim Cosmochim Acta 75(10):2911–2923

    Article  CAS  Google Scholar 

  192. Song Y, Yuan P, Zheng B, Peng J, Yuan F, Gao Y (2007) Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater. Chemosphere 69(2):319–324

    CAS  Article  Google Scholar 

  193. Stabnikov V, Tay S-L, Tay D-K, Ivanov VN (2004) Effect of iron hydroxide on phosphate removal during anaerobic digestion of activated sludge. Appl Biochem Microbiol 40(4):376–380

    CAS  Article  Google Scholar 

  194. Steen, I. 1998. Management of a non-renewable resource. Phosphorus and potassium (217), 25–31

  195. Stenmark, L. 2003. Super-critical fluid technologies within Chematur Engineering AB. Proceedings from the third international disposal conference; Karlskoga; Sweden; 10–11 November; 2003. Linköping University Electronic Press

  196. Stratful I, Scrimshaw M, Lester J (2001) Conditions influencing the precipitation of magnesium ammonium phosphate. Water Res 35(17):4191–4199

    CAS  Article  Google Scholar 

  197. Strom PF (2006) Technologies to remove phosphorus from wastewater. Rutgers University, New Brunswick, New Jersey, p 18

    Google Scholar 

  198. Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley

  199. Sun W-D, Wang J-Y, Zhang K-C, Wang X-L (2010) Study on precipitation of struvite and struvite-K crystal in goats during onset of urolithiasis. Res Vet Sci 88(3):461–466

    CAS  Article  Google Scholar 

  200. Svanks K (1971) Precipitation of phosphates from water with ferrous salts. Ohio State University, Water Resources Center

    Google Scholar 

  201. Talbot P, De la Noüe J (1993) Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions. Water Res 27(1):153–159

    CAS  Article  Google Scholar 

  202. Taxer K, Bartl H (2004) On the dimorphy between the variscite and clinovariscite group: refined finestructural relationship of strengite and clinostrengite, Fe (PO4)2. 2H2O. Cryst Res Technol 39(12):1080–1088

  203. Taylor KG, Boult S (2007) The role of grain dissolution and diagenetic mineral precipitation in the cycling of metals and phosphorus: a study of a contaminated urban freshwater sediment. Appl Geochem 22(7):1344–1358

    CAS  Article  Google Scholar 

  204. Taylor KG, Hudson-Edwards KA, Bennett AJ, Vishnyakov V (2008) Early diagenetic vivianite [Fe 3 (PO 4) 2· 8H 2 O] in a contaminated freshwater sediment and insights into zinc uptake: a μ-EXAFS, μ-XANES and Raman study. Appl Geochem 23(6):1623–1633

  205. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677

    CAS  Article  Google Scholar 

  206. Uysal A, Yilmazel YD, Demirer GN (2010) The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J Hazard Mater 181(1):248–254

    CAS  Article  Google Scholar 

  207. Van Starkenburg, W., Rijs, G. 1988. Phosphate in sewage and sewage treatment. Proc. of SCOPE phosphorus cycles workshop

  208. Veeramani H, Alessi DS, Suvorova EI, Lezama-Pacheco JS, Stubbs JE, Sharp JO, Dippon U, Kappler A, Bargar JR, Bernier-Latmani R (2011) Products of abiotic U (VI) reduction by biogenic magnetite and vivianite. Geochim Cosmochim Acta 75(9):2512–2528

    CAS  Article  Google Scholar 

  209. Veith J, Sposito G (1977) Reactions of aluminosilicates, aluminum hydrous oxides, and aluminum oxide with o-phosphate: the formation of X-ray amorphous analogs of variscite and montebrasite 1. Soil Sci Soc Am J 41(5):870–876

    CAS  Article  Google Scholar 

  210. Volk C, Dundore E, Schiermann J, Lechevallier M (2000) Practical evaluation of iron corrosion control in a drinking water distribution system. Water Res 34(6):1967–1974

    CAS  Article  Google Scholar 

  211. Walpersdorf E, Koch CB, Heiberg L, O’Connell DW, Kjaergaard C, Hansen HB (2013) Does vivianite control phosphate solubility in anoxic meadow soils? Geoderma 193:189–199

    Article  CAS  Google Scholar 

  212. Wang C, Jiang H-L (2016) Chemicals used for in situ immobilization to reduce the internal phosphorus loading from lake sediments for eutrophication control. Crit Rev Environ Sci Technol 46(10):947–997

    CAS  Article  Google Scholar 

  213. Wang H, Wang Xj, Wang Ws, Yan Xb, Xia P, Chen J, Zhao Jf (2016) Modeling and optimization of struvite recovery from wastewater and reusing for heavy metals immobilization in contaminated soil. J Chem Technol Biotechnol 91:3045–3052

    CAS  Article  Google Scholar 

  214. Wind, T. 2007. The role of detergents in the phosphate-balance of European surface waters. Official Publication of the European Water Association (EWA)

  215. Woodard S (2006) Magnetically enhanced coagulation for phosphorus removal. Session B2 in WERF

  216. Wu Q, Bishop PL (2004) Enhancing struvite crystallization from anaerobic supernatant. J Environ Eng Sci 3(1):21–29

    CAS  Article  Google Scholar 

  217. Xia W-T, Ren Z-D, Gao Y-F (2011) Removal of phosphorus from high phosphorus iron ores by selective HCl leaching method. J Iron Steel Res Int 18(5):1–4

    CAS  Article  Google Scholar 

  218. Yetilmezsoy K, Sapci-Zengin Z (2009) Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. J Hazard Mater 166(1):260–269

    CAS  Article  Google Scholar 

  219. Zanini L, Robertson W, Ptacek C, Schiff S, Mayer T (1998) Phosphorus characterization in sediments impacted by septic effluent at four sites in central Canada. J Contam Hydrol 33(3):405–429

    CAS  Article  Google Scholar 

  220. Zhang X (2012) Factors influencing iron reduction-induced phosphorus precipitation. Environ Eng Sci 29(6):511–519

    Article  CAS  Google Scholar 

  221. Zhao, Q., Zhang, T., Frear, C., Bowers, K., Harrison, J., and Chen, S. 2010. Phosphorous recovery technology in conjunction with dairy anaerobic digestion.CFF final report-AD component

Download references

Funding

This work was supported by a Nuclear Core Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government’s Ministry of Trade, Industry and Energy (No. 20171510300670), a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2018R1A2B6001660), and the Environmental Engineering Program of Manhattan College, NY, USA.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hossain M Azam or Man Jae Kwon.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azam, H.M., Alam, S.T., Hasan, M. et al. Phosphorous in the environment: characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems. Environ Sci Pollut Res 26, 20183–20207 (2019). https://doi.org/10.1007/s11356-019-04732-y

Download citation

Keywords

  • Phosphorus removal
  • Mineral precipitation
  • Mineral recycling
  • Struvite
  • Vivianite