Advertisement

Phosphorous in the environment: characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems

  • Hossain M AzamEmail author
  • Seemi Tasnim Alam
  • Mahmudul Hasan
  • Djigui David Stéphane Yameogo
  • Arvind Damodara Kannan
  • Arifur Rahman
  • Man Jae KwonEmail author
Review Article
  • 118 Downloads

Abstract

Phosphorus (P), an essential element for living cells, is present in different soluble and adsorbed chemical forms found in soil, sediment, and water. Most species are generally immobile and easily adsorbed onto soil particles. However, P is a major concern owing to its serious environmental effects (e.g., eutrophication, scale formation) when found in excess in natural or engineered environments. Commercial chemicals, fertilizers, sewage effluent, animal manure, and agricultural waste are the major sources of P pollution. But there is limited P resources worldwide. Therefore, the fate, effects, and transport of P in association with its removal, treatment, and recycling in natural and engineered systems are important. P removal and recycling technologies utilize different types of physical, biological, and chemical processes. Moreover, P minerals (struvite, vivianite, etc.) can precipitate and form scales in drinking water and wastewater systems. Hence, P minerals (e.g., struvite, vivianite etc.) are problems when left uncontrolled and unmonitored although their recovery is beneficial (e.g., slow release fertilizers, sustainable P sources, soil enhancers). Sources like wastewater, human waste, waste nutrient solution, etc. can be used for P recycling. This review paper extensively summarizes the importance and distribution of P in different environmental compartments, the effects of P in natural and engineered systems, P removal mechanisms through treatment, and recycling technologies specially focusing on various types of phosphate mineral precipitation. In particular, the factors controlling mineral (e.g., struvite and vivianite) precipitation in natural and engineered systems are also discussed.

Keywords

Phosphorus removal Mineral precipitation Mineral recycling Struvite Vivianite 

Notes

Funding information

This work was supported by a Nuclear Core Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government’s Ministry of Trade, Industry and Energy (No. 20171510300670), a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2018R1A2B6001660), and the Environmental Engineering Program of Manhattan College, NY, USA.

References

  1. Aage H, Andersen B, Blom A, Jensen I (1997) The solubility of struvite. J Radioanal Nucl Chem 223(1–2):213–215CrossRefGoogle Scholar
  2. Acelas NY, Flórez E, López D (2015) Phosphorus recovery through struvite precipitation from wastewater: effect of the competitive ions. Desalin Water Treat 54(9):2468–2479CrossRefGoogle Scholar
  3. Adnan A, Koch FA, Mavinic DS (2003a) Pilot-scale study of phosphorus recovery through struvite crystallization—II: applying in-reactor supersaturation ratio as a process control parameter. J Environ Eng Sci 2(6):473–483CrossRefGoogle Scholar
  4. Adnan A, Mavinic DS, Koch FA (2003b) Pilot-scale study of phosphorus recovery through struvite crystallization examining the process feasibility. J Environ Eng Sci 2(5):315–324CrossRefGoogle Scholar
  5. Agric UD (1978) Improving soils with organic wastes. USDA, Washington, DCGoogle Scholar
  6. Alexander G, Stevens R (1976) Per capita phosphorus loading from domestic sewage. Water Res 10(9):757–764CrossRefGoogle Scholar
  7. Ali, M. 2005. Struvite crystallization from nutrient rich wastewater, Vol. Doctoral dissertation James Cook UniversityGoogle Scholar
  8. Amjad Z, Demadis KD (2015) Mineral scales and deposits: scientific and technological approaches. ElsevierGoogle Scholar
  9. Andrade A, Schuiling R (2001) The chemistry of struvite crystallization. Min J 23:5–6Google Scholar
  10. Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2000) Handbook of mineralogy, volume IV, arsenates, phosphates, vanadates. 1–680, Mineralogical Society of America, Chantilly, VirginiaGoogle Scholar
  11. Azam H (2012) Iron reduction mediated increases in carbon oxidation and phosphorus precipitation in on-site wastewater systems, Vol. Doctoral dissertation University of Illinois at Urbana-ChampaignGoogle Scholar
  12. Azam HM, Finneran KT (2014) Fe (III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2·8H2O) in septic system wastewater. Chemosphere 97:1–9Google Scholar
  13. Babić-Ivančić V, Kontrec J, Kralj D, Brečević L (2002) Precipitation diagrams of struvite and dissolution kinetics of different struvite morphologies. Croat Chem Acta 75(1):89–106Google Scholar
  14. Badgery-Parker J (2002) Managing waste water from intensive horticulture: a wetland system. 2nd ed.Google Scholar
  15. Bassett, H., Bedwell, W.L. 1933. 210. Studies of phosphates. Part I. Ammonium magnesium phosphate and related compounds. Journal of the Chemical Society (Resumed), 854–871Google Scholar
  16. Batstone D (2009) Towards a generalised physicochemical modelling framework. Rev Environ Sci Biotechnol 8(2):113–114CrossRefGoogle Scholar
  17. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi S, Pavlostathis S, Rozzi A, Sanders W, Siegrist H, Vavilin V (2002) The IWA anaerobic digestion model no 1 (ADM1). Water Sci Technol 45(10):65–73CrossRefGoogle Scholar
  18. Baturin G (2003) Phosphorus cycle in the ocean. Lithol Miner Resour 38(2):101–119CrossRefGoogle Scholar
  19. Becher KD, Kalkhoff SJ, Schnoebelen DJ, Barnes KK, and Miller VE (2001) Water-quality assessment of the eastern Iowa basins—nitrogen, phosphorus, suspended sediment, and organic carbon in surface water, 1996–98Google Scholar
  20. Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University PressGoogle Scholar
  21. Berg U, Ehbrecht A, Röhm E, Weidler P, Nüesch R (2007) Impact of calcite on phosphorus removal and recovery from wastewater using CSH-filled fixed bed filters. J Residuals Sci Technol 4(2):73–81Google Scholar
  22. Bhuiyan M, Mavinic D, Beckie R (2007) A solubility and thermodynamic study of struvite. Environ Technol 28(9):1015–1026CrossRefGoogle Scholar
  23. Bhuiyan MIH, Mavinic D, Koch F (2008) Thermal decomposition of struvite and its phase transition. Chemosphere 70(8):1347–1356CrossRefGoogle Scholar
  24. Blöcher C, Niewersch C, Schröder H, Gebhardt W, Melin T (2009) Optimierte Phosphor-Rückgewinnung aus Klärschlämmen durch ein Hybridverfahren aus Niederdruck-Nassoxidation und Nanofiltration (Verbundprojekt PHOXNAN). Final report of BMBF project 02WA0796/97/98 Google Scholar
  25. Boers P, De Bles F (1991) Ion concentrations in interstitial water as indicators for phosphorus release processes and reactions. Water Res 25(5):591–598CrossRefGoogle Scholar
  26. Boistelle R, Abbona F, Madsen HL (1983) On the transformation of struvite into newberyite in aqueous systems. Phys Chem Miner 9(5):216–222CrossRefGoogle Scholar
  27. Bouropoulos NC, Koutsoukos PG (2000) Spontaneous precipitation of struvite from aqueous solutions. J Cryst Growth 213(3–4):381–388CrossRefGoogle Scholar
  28. Bouwman A, Lee D, Asman W, Dentener F, Van Der Hoek K, Olivier J (1997) A global high-resolution emission inventory for ammonia. Glob Biogeochem Cycles 11(4):561–587CrossRefGoogle Scholar
  29. Bowen HJM (1979) Environmental chemistry of the elements. AcademicGoogle Scholar
  30. Bowker RP, Stensel HD (1990) Phosphorus removal from wastewater. Noyes Data CorpGoogle Scholar
  31. Box GE, Draper NR (1987) Empirical model-building and response surfaces. WileyGoogle Scholar
  32. Boyd CE, Tucker CS (2012) Pond aquaculture water quality management. Springer Science and Business MediaGoogle Scholar
  33. Bridger G, Salutsky ML, Starostka R (1962) Micronutrient sources, metal ammonium phosphates as fertilizers. J Agric Food Chem 10(3):181–188CrossRefGoogle Scholar
  34. Britton A, Sacluti F, Oldham W, Mohammed A, Mavinic D, Koch F (2007) Value from waste–struvite recovery at the city of Edmonton’s gold bar WWTP. Proceedings of the IWA Specialist Conference, (SC’07), Moncton, New Brunswick, Canada. CiteseerGoogle Scholar
  35. Brogan J, Crowe M, Carty G (2001) Developing a national phosphorus balance for agriculture in Ireland: a discussion document. Environmental Protection AgencyGoogle Scholar
  36. Bruland KW (1983) Trace elements in sea water. In: Chemical oceanography, (Ed.) Riley, J.P. and Chester, R. (eds), London: Academic, pp. 157–220Google Scholar
  37. Burkart MR, Simpkins WW, Morrow AJ, Gannon JM (2004) Occurrence of total dissolved phosphorus in unconsolidated aquifers and aquitards in Iowa. JAWRA J Am Water Resour Assoc 40(3):827–834CrossRefGoogle Scholar
  38. Cao X, Harris W (2007) Carbonate and magnesium interactive effect on calcium phosphate precipitation. Environ Sci Technol 42(2):436–442CrossRefGoogle Scholar
  39. Cardew P (2009) Measuring the benefit of orthophosphate treatment on lead in drinking water. J Water Health 7(1):123–131CrossRefGoogle Scholar
  40. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568CrossRefGoogle Scholar
  41. Carus-Corporation (2016) Phosphorous discharge limits and drinking water corrosion control plans http://www.caruscorporation.com/page/home/news/phosphates-in-drinking-water
  42. Çelen I, Buchanan JR, Burns RT, Robinson RB, Raman DR (2007) Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure. Water Res 41(8):1689–1696CrossRefGoogle Scholar
  43. Cervantes FJ (2009) Environmental technologies to treat nitrogen pollution. IWA PublishingGoogle Scholar
  44. Chauhan CK, Joshi MJ (2014) Growth and characterization of struvite-Na crystals. J Cryst Growth 401:221–226CrossRefGoogle Scholar
  45. Chirmuley D (1994) Struvite precipitation in WWPTS: causes and solutions. Water-Melbourne Then Artarmon 21:21–21Google Scholar
  46. Corbridge DEC (2013) Phosphorus: chemistry, biochemistry and technology, sixth edn. CRCGoogle Scholar
  47. Cordell D, White S (2011) Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3(10):2027–2049CrossRefGoogle Scholar
  48. Cosgrove D (1967) Metabolism of organic phosphates in soil. Soil Biochemistry 1:216–228Google Scholar
  49. Cosgrove DJ, Irving G (1980) Inositol phosphates: their chemistry, biochemistry, and physiology. Elsevier Science and TechnologyGoogle Scholar
  50. Dana ES (1949) A textbook of mineralogy. Wiley, New YorkGoogle Scholar
  51. Danvirutai C, Noisong P, Youngme S (2010) Some thermodynamic functions and kinetics of thermal decomposition of NH4MnPO4. H2O in nitrogen atmosphere. J Therm Anal Calorim 100(1):117–124Google Scholar
  52. Darwish M, Aris A, Puteh MH, Abideen MZ, Othman MN (2016) Ammonium-nitrogen recovery from wastewater by struvite crystallization technology. Sep Purif Rev 45(4):261–274CrossRefGoogle Scholar
  53. Dhakal, S. 2008. A laboratory study of struvite precipitation for phosphorus removal from concentrated animal feeding operation wastewaterGoogle Scholar
  54. Dill H (2015) The Hagendorf-Pleystein Province: the center of pegmatites in an ensialic orogen. SpringerGoogle Scholar
  55. Dockhorn T (2009) About the economy of phosphorus recovery. In: Proceedings of international conference on nutrient recovery from wastewater streams, Vancouver, Canada. IWA Publishing, London, UK, ISBN 9781843392323Google Scholar
  56. Doyle JD, Oldring K, Churchley J, Price C, Parsons SA (2003) Chemical control of struvite precipitation. J Environ Eng 129(5):419–426CrossRefGoogle Scholar
  57. Doyle JD, Parsons SA (2002) Struvite formation, control and recovery. Water Res 36(16):3925–3940CrossRefGoogle Scholar
  58. Durrant A, Scrimshaw M, Stratful I, Lester J (1999) Review of the feasibility of recovering phosphate from wastewater for use as a raw material by the phosphate industry. Environ Technol 20(7):749–758CrossRefGoogle Scholar
  59. Edwards AC, Withers PJA (2007) Soil phosphorus management and water quality: a UK perspective. Soil Use Manag 14:124–130.  https://doi.org/10.1111/j.1475-2743.1998.tb00630.x CrossRefGoogle Scholar
  60. Egle L, Rechberger H, Krampe J, Zessner M (2016) Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci Total Environ 571:522–542CrossRefGoogle Scholar
  61. Ehama M, Hashihama F, Kinouchi S, Kanda J, Saito H (2016) Sensitive determination of total particulate phosphorus and particulate inorganic phosphorus in seawater using liquid waveguide spectrophotometry. Talanta 153:66–70CrossRefGoogle Scholar
  62. Fattah, K. 2012. Finding nutrient-related problems in wastewater treatment plants. International Conference on Environmental, Biomedical and Biotechnology IPCBEEGoogle Scholar
  63. Fattah KP (2010) Development of control strategies for the operation of a struvite crystallization process. University of British ColumbiaGoogle Scholar
  64. Fixen P, Ludwick A, Olsen S (1983) Phosphorus and potassium fertilization of irrigated alfalfa on calcareous soils: II. Soil phosphorus solubility relationships 1. Soil Sci Soc Am J 47(1):112–117CrossRefGoogle Scholar
  65. Frossard E, Bauer J, Lothe F (1997) Evidence of vivianite in FeSO4-flocculated sludges. Water Res 31(10):2449–2454Google Scholar
  66. Fuller WH (1972) Phosphorus: element and geochemistry. Ed. W.R. Fairbridge. The encyclopedia of geochemistry and environmental sciences, Encyclopedia of Earth Science series, IVA. New York; Van Nostrand Reinhold, 942–946Google Scholar
  67. Gagnon V, Maltais-Landry G, Puigagut J, Chazarenc F, Brisson J (2010) Treatment of hydroponics wastewater using constructed wetlands in winter conditions. Water Air Soil Pollut 212(1–4):483–490CrossRefGoogle Scholar
  68. Galbraith S, Schneider P (2009) A review of struvite nucleation studies. International Conference on Nutrient Recovery from Wastewater Streams: May 10–13, 2009, the Westin Bayshore Hotel and Resort, Vancouver, British Columbia, Canada. IWA Publishing. pp. 69Google Scholar
  69. Galleries, A. 2011. Amethyst galleries’ mineral galleryGoogle Scholar
  70. Gangoli N, Thodos G (1973) Phosphate adsorption studies. Journal (Water Pollution Control Federation):842–849Google Scholar
  71. Girard JE (2013) Principles of environmental chemistry. Jones and Bartlett PublishersGoogle Scholar
  72. Glasauer S, Weidler PG, Langley S, Beveridge TJ (2003) Controls on Fe reduction and mineral formation by a subsurface bacterium. Geochim Cosmochim Acta 67(7):1277–1288CrossRefGoogle Scholar
  73. Goldberg S (1992) Use of surface complexation models in soil chemical systems. Adv Agron 47:233–329CrossRefGoogle Scholar
  74. Graeser S, Postl W, Bojar H-P, Berlepsch P, Armbruster T, Raber T, Ettinger K, Walter F (2008) Struvite-(K), KMgPO4· 6H2O, the potassium equivalent of struvite—a new mineral. Eur J Mineral 20(4):629–633CrossRefGoogle Scholar
  75. Green, C., Johnson, P., Allen, V., Crossland, S. 2004. Treatment technologies for phosphorus removal from water derived from cattle feed yards. Plant and Soil Science Department and Agricultural and Applied Economics Department, Texas Tech UniversityGoogle Scholar
  76. Gupta S, Häni H, Schindler P (1979) Factors affecting the degree of phosphate-removal in the system FeCl3-orthophosphate and nature of the precipitates. Z Pflanzenernähr Bodenkd 142(5):705–718CrossRefGoogle Scholar
  77. Han DS, Abdel-Wahab A, Batchelor B (2010) Surface complexation modeling of arsenic (III) and arsenic (V) adsorption onto nanoporous titania adsorbents (NTAs). J Colloid Interface Sci 348(2):591–599CrossRefGoogle Scholar
  78. Hao X-D, Wang C-C, Lan L, Van Loosdrecht M (2008) Struvite formation, analytical methods and effects of pH and Ca2+. Water Sci Technol 58(8):1687–1692CrossRefGoogle Scholar
  79. Heinzmann B, Betriebe BW (2001) Phosphorus recovery in wastewater treatment plants. Second International ConferenceGoogle Scholar
  80. Henze M, Gujer W, Mino T, Van Loosdrecht M (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA PublishingGoogle Scholar
  81. Hislop H (2007) The nutrient cycle: closing the loop. Green AlianceGoogle Scholar
  82. Hizal J, Apak R (2006) Modeling of copper (II) and lead (II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid. J Colloid Interface Sci 295(1):1–13CrossRefGoogle Scholar
  83. Holman IP, Howden NJ, Bellamy P, Willby N, Whelan MJ, Rivas-Casado M (2010) An assessment of the risk to surface water ecosystems of groundwater P in the UK and Ireland. Sci Total Environ 408(8):1847–1857CrossRefGoogle Scholar
  84. Holtan H, Kamp-Nielsen L, Stuanes A (1988) Phosphorus in soil, water and sediment: an overview. In: Phosphorus in freshwater ecosystems, Springer, pp. 19–34Google Scholar
  85. Housecroft C, Sharpe A (2008) The group 16 elements. Inorganic chemistry. 3rd ed. New Jersey: Pearson, 520Google Scholar
  86. Hultman B, Levlin E, Stark K (2001) Phosphorus recovery from sewage sludges: research and experiences in Nordic countries. SCOPE 41:29–33Google Scholar
  87. Isherwood K (2000) Mineral fertilizer use and the environment by international fertilizer industry association. Revised Edition, ParisGoogle Scholar
  88. Jaffer Y, Clark T, Pearce P, Parsons S (2002) Potential phosphorus recovery by struvite formation. Water Res 36(7):1834–1842CrossRefGoogle Scholar
  89. Jenkins D, Ferguson JF, Menar AB (1971) Chemical processes for phosphate removal. Water Res 5(7):369–389CrossRefGoogle Scholar
  90. Jenkins D, Hermanowicz S (1991) Principles of chemical phosphate removal. In: Phosphorous and nitrogen removal from municipal wastewater: principles and practice. 2nd ed. Lewis, Boca Raton, Florida. 1991. p 91–110. 15 fig, 4 tab, 23 ref. Google Scholar
  91. Johnsson MS-A, Nancollas GH (1992) The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol Med 3(1):61–82CrossRefGoogle Scholar
  92. Johnston A, Steen I (2000) Understanding phosphorus and its use in agriculture. European Fertilizer Manufacturers AssociationGoogle Scholar
  93. Jonard M, Fürst A, Verstraeten A, Thimonier A, Timmermann V, Potočić N, Waldner P, Benham S, Hansen K, Merilä P (2015) Tree mineral nutrition is deteriorating in Europe. Glob Chang Biol 21(1):418–430CrossRefGoogle Scholar
  94. Kampf AR, Adams PM, Barwood H, Nash BP (2017) Fluorwavellite, Al3 (PO4) 2 (OH) 2F· 5H2O, the fluorine analog of wavellite. Am Mineral 102(4):909–915CrossRefGoogle Scholar
  95. Kataki S, West H, Clarke M, Baruah DC (2016) Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour Conserv Recycl 107:142–156CrossRefGoogle Scholar
  96. Kołodyńska D (2011a) Chelating agents of a new generation as an alternative to conventional chelators for heavy metal ions removal from different waste waters. INTECH Open Access PublisherGoogle Scholar
  97. Kołodyńska D (2011b) Chelating agents of a new generation as an alternative to conventional chelators for heavy metal ions removal from different waste waters. In: Expanding issues in desalination, InTechGoogle Scholar
  98. Koralewska J, Piotrowski K, Wierzbowska B, Matynia A (2009) Kinetics of reaction-crystallization of struvite in the continuous draft tube magma type crystallizers—influence of different internal hydrodynamics. Chin J Chem Eng 17(2):330–339CrossRefGoogle Scholar
  99. Kozik A, Hutnik N, Matynia A, Gluzinska J, Piotrowski K (2011) Recovery of phosphate (V) ions from liquid waste solutions containing organic impurities. Chemik 65(7):675–686Google Scholar
  100. Kwon MJ, Boyanov MI, Antonopoulos DA, Brulc JM, Johnston ER, Skinner KA, Kemner KM, O’Loughlin EJ (2014) Effects of dissimilatory sulfate reduction on FeIII (hydr)oxide reduction and microbial community development. Geochim Cosmochim Acta 129:177–190Google Scholar
  101. Kwon MJ, O’Loughlin EJ, Boyanov MI, Brulc JM, Johnston ER, Kemner KM, Antonopoulos DA (2016) Impact of organic carbon electron donors on microbial community development under iron- and sulfate-reducing conditions. PLoS One 11(1):e0146689CrossRefGoogle Scholar
  102. Lavelle P, Dugdale R, Scholes R, Berhe A, Carpenter E, Codispoti L, Izac A, Lemoalle J, Luizao F, Treguer P (2005) Nutrient cycling. In: Ecosystems and human well-being: current state and trends: findings of the condition and trends working group. Island Press, WashingtonGoogle Scholar
  103. Lazarova V, Savoye P, Janex M, Blatchley E, Pommepuy M (1999) Advanced wastewater disinfection technologies: state of the art and perspectives. Water Sci Technol 40(4–5):203–213CrossRefGoogle Scholar
  104. Le Corre KS, Valsami-Jones E, Hobbs P, Jefferson B, Parsons SA (2007) Struvite crystallisation and recovery using a stainless steel structure as a seed material. Water Res 41(11):2449–2456CrossRefGoogle Scholar
  105. Lee J, Rahman M, Ra C (2009) Dose effects of Mg and PO4 sources on the composting of swine manure. J Hazard Mater 169(1):801–807CrossRefGoogle Scholar
  106. Lee JY, Rahman A, Behrens J, Brennan C, Ham B, Kim HS, Nho CW, Yun S-T, Azam H, Kwon MJ (2018) Nutrient removal from hydroponic wastewater by a microbial consortium and a culture of Paracercomonas saepenatans. New Biotechnol 41:15–24CrossRefGoogle Scholar
  107. Levin GV, Shapiro J (1965) Metabolic uptake of phosphorus by wastewater organisms. Journal (Water Pollution Control Federation):800–821Google Scholar
  108. Li Z, Ren X, Zuo J, Liu Y, Duan E, Yang J, Chen P, Wang Y (2012) Struvite precipitation for ammonia nitrogen removal in 7-aminocephalosporanic acid wastewater. Molecules 17(2):2126–2139CrossRefGoogle Scholar
  109. Lindsay WL (1979) Chemical equilibria in soils. WileyGoogle Scholar
  110. Liu Y, Kumar S, Kwag JH, Ra C (2013) Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review. J Chem Technol Biotechnol 88(2):181–189CrossRefGoogle Scholar
  111. Lowe EF, Battoe LE, Stites DL, Coveney MF (1992) Particulate phosphorus removal via wetland filtration: an examination of potential for hypertrophic lake restoration. Environ Manag 16(1):67–74CrossRefGoogle Scholar
  112. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press on DemandGoogle Scholar
  113. Ma N, Rouff AA (2012) Influence of pH and oxidation state on the interaction of arsenic with struvite during mineral formation. Environ Sci Technol 46(16):8791–8798CrossRefGoogle Scholar
  114. Madsen HEL, Hansen HCB (2014) Kinetics of crystal growth of vivianite, Fe3(PO4)2 8H2O, from solution at 25, 35 and 45° C. J Cryst Growth 401:82–86CrossRefGoogle Scholar
  115. Matynia A, Wierzbowska B, Hutnik N, Mazienczuk A, Kozik A, Piotrowski K (2013) Separation of struvite from mineral fertilizer industry wastewater. Procedia Environ Sci 18:766–775CrossRefGoogle Scholar
  116. McDowell R, Sharpley A, Folmar G (2003) Modification of phosphorus export from an eastern USA catchment by fluvial sediment and phosphorus inputs. Agric Ecosyst Environ 99(1):187–199CrossRefGoogle Scholar
  117. McGowan G, Prangnell J (2006) The significance of vivianite in archaeological settings. Geoarchaeology 21(1):93–111CrossRefGoogle Scholar
  118. Mekmene O, Quillard S, Rouillon T, Bouler J-M, Piot M, Gaucheron F (2009) Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions. Dairy Sci Technol 89(3–4):301–316CrossRefGoogle Scholar
  119. Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci 282(4):401–450CrossRefGoogle Scholar
  120. Meyers RH, Montgomery DC (2002) Response surface methodology. Process and product optimisation using design experiments, second edn. Wiley, New York, NYGoogle Scholar
  121. Miot J, Benzerara K, Morin G, Bernard S, Beyssac O, Larquet E, Kappler A, Guyot F (2009) Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology 7(3):373–384CrossRefGoogle Scholar
  122. Möller, G. 2006. Absolute (1000 fold) phosphorus removal: performance, mechanisms and engineering analysis of iron-based reactive filtration and coupled CEPT at the Hayden, ID WWTP. Session P2 in WERF Google Scholar
  123. Montag D, Pinnekamp J, Dittrich C, Rath W, Schmidt M, Pfennig A, Seyfried A, Grömping M, van Norden H, Doetsch P (2011) Rückgewinnung von Phosphor aus Klärschlammasche mittels des nasschemischen PASCH-Verfahrens. in: Gewässerschutz-Wasser-Abwasser 228. Förderinitiative “Kreislaufwirtschaft für Pflanzennährstoffe, insbesondere Phosphor”. Schlusspräsentation. Aachen. Report Google Scholar
  124. Montag DM, Pinnekamp J (2008) Phosphorrückgewinnung bei der Abwasserreinigung: Entwicklung eines Verfahrens zur Integration in kommunale Kläranlagen. Lehrstuhl für Siedlungswasserwirtschaft und Siedlungsabfallwirtschaft und Institut für SiedlungswasserwirtschaftGoogle Scholar
  125. Montgomery JM, Engineers C (1985) Water treatment principles and design. Wiley, New YorkGoogle Scholar
  126. Morel F, Hering J (1993) Principles and applications of aquatic chemistry. Wiley, New YorkGoogle Scholar
  127. Morf L (2012) Phosphor aus Klärschlamm—Strategie des Kanton Zürichs und der Schweiz (Phosphorus from sewage sludge—the strategy of the Canton of Zürich and Switzerland). Flessner Tagung Wasser-und Abfallwirtschaft:14–16Google Scholar
  128. Morse G, Brett S, Guy J, Lester J (1998a) Phosphorus removal and recovery technologies. Sci Total Environ 212(1):69–81CrossRefGoogle Scholar
  129. Morse G, Brett S, Guy J, Lester J (1998b) Review: Phosphorus removal and recovery technologies. Sci Total Environ 212(1):69–81CrossRefGoogle Scholar
  130. Morton SC, Edwards M (2005) Reduced phosphorus compounds in the environment. Crit Rev Environ Sci Technol 35(4):333–364CrossRefGoogle Scholar
  131. Morton SC, Glindemann D, Edwards MA (2003) Phosphates, phosphites, and phosphides in environmental samples. Environ Sci Technol 37(6):1169–1174CrossRefGoogle Scholar
  132. Muryanto S, Bayuseno A (2014) Influence of Cu2+ and Zn2+ as additives on crystallization kinetics and morphology of struvite. Powder Technol 253:602–607CrossRefGoogle Scholar
  133. Nelson NO, Mikkelsen RL, Hesterberg DL (2003) Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg: P ratio and determination of rate constant. Bioresour Technol 89(3):229–236CrossRefGoogle Scholar
  134. Nolan BT, Stoner JD (2000) Nutrients in groundwaters of the conterminous United States, 1992–1995. Environ Sci Technol 34(7):1156–1165CrossRefGoogle Scholar
  135. Nörtemann B (2005) Biodegradation of chelating agents: EDTA, DTPA, PDTA, NTA, and EDDS. Biogeochemistry of chelating agents, chapter 8, pp 150–170,  https://doi.org/10.1021/bk-2005-0910. ch008, ACS Symposium Series, Vol. 910
  136. Nowack B (2003) Environmental chemistry of phosphonates. Water Res 37(11):2533–2546CrossRefGoogle Scholar
  137. Nowack, B., VanBriesen, J.M. 2005. Chelating agents in the environment. Biogeochemistry of chelating agents, 1–18Google Scholar
  138. Nowak B, Perutka L, Aschenbrenner P, Kraus P, Rechberger H, Winter F (2011) Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash. Waste Manag 31(6):1285–1291CrossRefGoogle Scholar
  139. Nriagu J, Dell C (1974) Diagenetic formation of iron phosphates in recent lake sediments. Am Mineral 59:934–946Google Scholar
  140. Nriagu JO (1984) Phosphate minerals: their properties and general modes of occurrence. In: Phosphate minerals, Springer, pp. 1–136Google Scholar
  141. Nriagu JO (1972) Stability of vivianite and ion-pair formation in the system Fe3(PO4)2-H3PO4-H2O. Geochim Cosmochim Acta 36(4):459–470CrossRefGoogle Scholar
  142. Nunes, A.P.L. 2012. Estudos electrocineticos e de flotabilidade de wavellita. turquesa, senegalita e apatita, Vol. Tese de Doutorado, Escola de Engenharia da UFMGGoogle Scholar
  143. Nunes APL, Peres AEC, De Araujo AC, Valadão GES (2011) Electrokinetic properties of wavellite and its floatability with cationic and anionic collectors. J Colloid Interface Sci 361(2):632–638CrossRefGoogle Scholar
  144. O’Connell DW, Jensen MM, Jakobsen R, Thamdrup B, Andersen TJ, Kovacs A, Hansen HCB (2015) Vivianite formation and its role in phosphorus retention in Lake Ørn, Denmark. Chem Geol 409:42–53CrossRefGoogle Scholar
  145. Oehmen A, Saunders AM, Vives MT, Yuan Z, Keller J (2006) Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. J Biotechnol 123(1):22–32CrossRefGoogle Scholar
  146. Ohashi S, Van Wazer JR (1959) Structure and properties of the condensed phosphates. XIV. Calcium polyphosphates. J Am Chem Soc 81(4):830–832CrossRefGoogle Scholar
  147. Ohlinger K, Young T, Schroeder E (1998) Predicting struvite formation in digestion. Water Res 32(12):3607–3614CrossRefGoogle Scholar
  148. Ohlinger KN, Young TM, Schroeder ED (1999) Kinetics effects on preferential struvite accumulation in wastewater. J Environ Eng 125(8):730–737CrossRefGoogle Scholar
  149. Oliver RL, Ganf GG (2000) Freshwater blooms. In: The ecology of cyanobacteria, Springer, pp. 149–194Google Scholar
  150. Panasiuk O (2010a) Phosphorus removal and recovery from wastewater using magnetiteGoogle Scholar
  151. Panasiuk O (2010b) Phosphorus removal and recovery from wastewater using magnetiteGoogle Scholar
  152. Park J, Craggs R, Sukias J (2008) Treatment of hydroponic wastewater by denitrification filters using plant prunings as the organic carbon source. Bioresour Technol 99(8):2711–2716CrossRefGoogle Scholar
  153. Parkhurst DL, Stollenwerk KG, Colman JA (2003) Reactive-transport simulation of phosphorus in the sewage plume at the Massachusetts Military Reservation, Cape Cod, Massachusetts. US Department of the Interior, US Geological SurveyGoogle Scholar
  154. Paul EA, Clark PF (1996) Soil microbiology and biochemistry. Academic, San Diego, CAGoogle Scholar
  155. Pereira AC, Papini RM (2015) Processes for phosphorus removal from iron ore—a review. Rem: Revista Escola de Minas 68(3):331–335Google Scholar
  156. Pierzynski GM, McDowell RW (2005) Chemistry, cycling, and potential movement of inorganic phosphorus in soils. Phosphorus: agriculture and the environment (phosphorusagric), 53–86Google Scholar
  157. Prasad M (2013) A literature review on the availability of phosphorus from compost in relation to the nitrate regulations SI378 of 2006. Small scale study report prepared for the Environmental Protection Agency by Cre-composting Association of Ireland, STRIVE-program, Republic of IrelandGoogle Scholar
  158. Prywer J, Olszynski M (2013) Influence of disodium EDTA on the nucleation and growth of struvite and carbonate apatite. J Cryst Growth 375:108–114CrossRefGoogle Scholar
  159. Rahman MM, Liu Y, Kwag J-H, Ra C (2011) Recovery of struvite from animal wastewater and its nutrient leaching loss in soil. J Hazard Mater 186(2):2026–2030CrossRefGoogle Scholar
  160. Rahman MM, Salleh MAM, Rashid U, Ahsan A, Hossain MM, Ra CS (2014) Production of slow release crystal fertilizer from wastewaters through struvite crystallization—a review. Arab J Chem 7(1):139–155CrossRefGoogle Scholar
  161. Ralph J, Chau I (2014) Mindat. org—the mineral and locality databaseGoogle Scholar
  162. Rayner-Canham G, Overton T (2003) Descriptive inorganic chemistry. MacmillanGoogle Scholar
  163. Reddy KR, O’Connor GA, Schelske CL (1999) Phosphorus biogeochemistry of sub-tropical ecosystems. CRCGoogle Scholar
  164. Reimann C, de Caritat P (1998) Chemical elements in the environment—factsheets for the geochemist and environmental scientist. Springer, Berlin, p 1998Google Scholar
  165. Rittmann BE, Mayer B, Westerhoff P, Edwards M (2011) Capturing the lost phosphorus. Chemosphere 84(6):846–853CrossRefGoogle Scholar
  166. Robertson W (2003) Enhanced attenuation of septic system phosphate in noncalcareous sediments. Ground Water 41(1):48–56CrossRefGoogle Scholar
  167. Ronteltap M, Maurer M, Gujer W (2007) Struvite precipitation thermodynamics in source-separated urine. Water Res 41(5):977–984CrossRefGoogle Scholar
  168. Rosenqvist IT (1970) Formation of vivianite in Holocene clay sediments. Lithos 3(4):327–334CrossRefGoogle Scholar
  169. Rothe M, Frederichs T, Eder M, Kleeberg A, Hupfer M (2014) Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment: a novel analytical approach. Biogeosciences 11(18):5169–5180CrossRefGoogle Scholar
  170. Rothe M, Kleeberg A, Hupfer M (2016) The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth Sci Rev 158:51–64CrossRefGoogle Scholar
  171. Rouff AA (2012) Sorption of chromium with struvite during phosphorus recovery. Environ Sci Technol 46(22):12493–12501CrossRefGoogle Scholar
  172. Rouff AA (2013) Temperature-dependent phosphorus precipitation and chromium removal from struvite-saturated solutions. J Colloid Interface Sci 392:343–348CrossRefGoogle Scholar
  173. Rouff AA, Ramlogan MV, Rabinovich A (2016) Synergistic removal of zinc and copper in greenhouse waste effluent by struvite. ACS Sustainable Chemistry and Engineering 4(3):1319–1327CrossRefGoogle Scholar
  174. Rouzies D, Millet J (1993) Mössbauer study of synthetic oxidized vivianite at room temperature. Hyperfine Interactions 77(1):19–28CrossRefGoogle Scholar
  175. Rybicki S (1997) Advances wastewater treatment: phosphorus removal from wastewater. Royal Institute of TechnologyGoogle Scholar
  176. Rybicki SM (1998) New technologies of phosphorus removal from wastewater. Proc. Of a Polish-Swedish Seminar, Joint Polish Swedish Reports, ReportGoogle Scholar
  177. Ryu H-D, Kim D, Lee S-I (2008) Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater. J Hazard Mater 156(1–3):163–169CrossRefGoogle Scholar
  178. Sabbag H, Brenner A, Nikolski A, Borojovich EJ (2015) Prevention and control of struvite and calcium phosphate precipitation by chelating agents. Desalin Water Treat 55(1):61–69CrossRefGoogle Scholar
  179. Sakthivel SR, Tilley E, Udert KM (2012) Wood ash as a magnesium source for phosphorus recovery from source-separated urine. Science of the Total Environment, 419, 68–75Google Scholar
  180. Savenko V, Zakharova E (1997) Main principles of the behavior of phosphorus in river discharge. Vodnye Resursy 24(2):159–168Google Scholar
  181. Scheidig K, Mallon J, Schaaf M, Riedl R (2013) P-Recycling-Dünger aus der Schmelzvergasung von Klärschlamm und Klärschlammasche. KA–Korrespondenz Abwasser, Abfall 10:845–850Google Scholar
  182. Sedlak RI (1991) Phosphorus and nitrogen removal from municipal wastewater: principles and practice. Second edition. CRCGoogle Scholar
  183. Serrano S, O’Day PA, Vlassopoulos D, García-González MT, Garrido F (2009) A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils. Geochim Cosmochim Acta 73(3):543–558CrossRefGoogle Scholar
  184. Sharp R, Vadiveloo E, Fergen R, Moncholi M, Pitt P, Wankmuller D, Latimer R (2013) A theoretical and practical evaluation of struvite control and recovery. Water Environ Res 85(8):675–686CrossRefGoogle Scholar
  185. Sharpley A, Foy B, Withers P (2000) Practical and innovative measures for the control of agricultural phosphorus losses to water: an overview. J Environ Qual 29(1):1–9CrossRefGoogle Scholar
  186. Shin H. S., Lee S. M. (1998) Environmental Technology 19(3):283-290  https://doi.org/10.1080/09593331908616682 Removal of Nutrients in Wastewater by using Magnesium Salts
  187. Shu L, Schneider P, Jegatheesan V, Johnson J (2006) An economic evaluation of phosphorus recovery as struvite from digester supernatant, Bioresource Technology, Volume 97, Issue 17, November 2006, Pages 2211–2216. https://www.sciencedirect.com/science/article/pii/S0960852405005304
  188. Sims, J.T. 1998. Soil testing for phosphorus: environmental uses and implications. So. Coop. Series Bull. No. 389. Univ. Delaware, Newark, DEGoogle Scholar
  189. Smil V (1999) Nitrogen in crop production: an account of global flows. Glob Biogeochem Cycles 13(2):647–662CrossRefGoogle Scholar
  190. Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25(1):53–88CrossRefGoogle Scholar
  191. Sø HU, Postma D, Jakobsen R, Larsen F (2011) Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling. Geochim Cosmochim Acta 75(10):2911–2923CrossRefGoogle Scholar
  192. Song Y, Yuan P, Zheng B, Peng J, Yuan F, Gao Y (2007) Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater. Chemosphere 69(2):319–324CrossRefGoogle Scholar
  193. Stabnikov V, Tay S-L, Tay D-K, Ivanov VN (2004) Effect of iron hydroxide on phosphate removal during anaerobic digestion of activated sludge. Appl Biochem Microbiol 40(4):376–380CrossRefGoogle Scholar
  194. Steen, I. 1998. Management of a non-renewable resource. Phosphorus and potassium (217), 25–31Google Scholar
  195. Stenmark, L. 2003. Super-critical fluid technologies within Chematur Engineering AB. Proceedings from the third international disposal conference; Karlskoga; Sweden; 10–11 November; 2003. Linköping University Electronic PressGoogle Scholar
  196. Stratful I, Scrimshaw M, Lester J (2001) Conditions influencing the precipitation of magnesium ammonium phosphate. Water Res 35(17):4191–4199CrossRefGoogle Scholar
  197. Strom PF (2006) Technologies to remove phosphorus from wastewater. Rutgers University, New Brunswick, New Jersey, p 18Google Scholar
  198. Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural waters. WileyGoogle Scholar
  199. Sun W-D, Wang J-Y, Zhang K-C, Wang X-L (2010) Study on precipitation of struvite and struvite-K crystal in goats during onset of urolithiasis. Res Vet Sci 88(3):461–466CrossRefGoogle Scholar
  200. Svanks K (1971) Precipitation of phosphates from water with ferrous salts. Ohio State University, Water Resources CenterGoogle Scholar
  201. Talbot P, De la Noüe J (1993) Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions. Water Res 27(1):153–159CrossRefGoogle Scholar
  202. Taxer K, Bartl H (2004) On the dimorphy between the variscite and clinovariscite group: refined finestructural relationship of strengite and clinostrengite, Fe (PO4)2. 2H2O. Cryst Res Technol 39(12):1080–1088Google Scholar
  203. Taylor KG, Boult S (2007) The role of grain dissolution and diagenetic mineral precipitation in the cycling of metals and phosphorus: a study of a contaminated urban freshwater sediment. Appl Geochem 22(7):1344–1358CrossRefGoogle Scholar
  204. Taylor KG, Hudson-Edwards KA, Bennett AJ, Vishnyakov V (2008) Early diagenetic vivianite [Fe 3 (PO 4) 2· 8H 2 O] in a contaminated freshwater sediment and insights into zinc uptake: a μ-EXAFS, μ-XANES and Raman study. Appl Geochem 23(6):1623–1633Google Scholar
  205. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677CrossRefGoogle Scholar
  206. Uysal A, Yilmazel YD, Demirer GN (2010) The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J Hazard Mater 181(1):248–254CrossRefGoogle Scholar
  207. Van Starkenburg, W., Rijs, G. 1988. Phosphate in sewage and sewage treatment. Proc. of SCOPE phosphorus cycles workshop Google Scholar
  208. Veeramani H, Alessi DS, Suvorova EI, Lezama-Pacheco JS, Stubbs JE, Sharp JO, Dippon U, Kappler A, Bargar JR, Bernier-Latmani R (2011) Products of abiotic U (VI) reduction by biogenic magnetite and vivianite. Geochim Cosmochim Acta 75(9):2512–2528CrossRefGoogle Scholar
  209. Veith J, Sposito G (1977) Reactions of aluminosilicates, aluminum hydrous oxides, and aluminum oxide with o-phosphate: the formation of X-ray amorphous analogs of variscite and montebrasite 1. Soil Sci Soc Am J 41(5):870–876CrossRefGoogle Scholar
  210. Volk C, Dundore E, Schiermann J, Lechevallier M (2000) Practical evaluation of iron corrosion control in a drinking water distribution system. Water Res 34(6):1967–1974CrossRefGoogle Scholar
  211. Walpersdorf E, Koch CB, Heiberg L, O’Connell DW, Kjaergaard C, Hansen HB (2013) Does vivianite control phosphate solubility in anoxic meadow soils? Geoderma 193:189–199CrossRefGoogle Scholar
  212. Wang C, Jiang H-L (2016) Chemicals used for in situ immobilization to reduce the internal phosphorus loading from lake sediments for eutrophication control. Crit Rev Environ Sci Technol 46(10):947–997CrossRefGoogle Scholar
  213. Wang H, Wang Xj, Wang Ws, Yan Xb, Xia P, Chen J, Zhao Jf (2016) Modeling and optimization of struvite recovery from wastewater and reusing for heavy metals immobilization in contaminated soil. J Chem Technol Biotechnol 91:3045–3052CrossRefGoogle Scholar
  214. Wind, T. 2007. The role of detergents in the phosphate-balance of European surface waters. Official Publication of the European Water Association (EWA)Google Scholar
  215. Woodard S (2006) Magnetically enhanced coagulation for phosphorus removal. Session B2 in WERF Google Scholar
  216. Wu Q, Bishop PL (2004) Enhancing struvite crystallization from anaerobic supernatant. J Environ Eng Sci 3(1):21–29CrossRefGoogle Scholar
  217. Xia W-T, Ren Z-D, Gao Y-F (2011) Removal of phosphorus from high phosphorus iron ores by selective HCl leaching method. J Iron Steel Res Int 18(5):1–4CrossRefGoogle Scholar
  218. Yetilmezsoy K, Sapci-Zengin Z (2009) Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. J Hazard Mater 166(1):260–269CrossRefGoogle Scholar
  219. Zanini L, Robertson W, Ptacek C, Schiff S, Mayer T (1998) Phosphorus characterization in sediments impacted by septic effluent at four sites in central Canada. J Contam Hydrol 33(3):405–429CrossRefGoogle Scholar
  220. Zhang X (2012) Factors influencing iron reduction-induced phosphorus precipitation. Environ Eng Sci 29(6):511–519CrossRefGoogle Scholar
  221. Zhao, Q., Zhang, T., Frear, C., Bowers, K., Harrison, J., and Chen, S. 2010. Phosphorous recovery technology in conjunction with dairy anaerobic digestion.CFF final report-AD componentGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringManhattan CollegeBronxUSA
  2. 2.Korea Institute of Science and Technology (KIST)GangneungsiSouth Korea
  3. 3.University of Science and TechnologyDaejeonSouth Korea
  4. 4.Department of Civil and Environmental EngineeringThe George Washington UniversityWashingtonUSA
  5. 5.Freese and Nichols, Inc.DallasUSA
  6. 6.Department of Earth and Environmental SciencesKorea UniversitySeoulSouth Korea

Personalised recommendations