Skip to main content

Advertisement

Log in

Phosphorous in the environment: characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phosphorus (P), an essential element for living cells, is present in different soluble and adsorbed chemical forms found in soil, sediment, and water. Most species are generally immobile and easily adsorbed onto soil particles. However, P is a major concern owing to its serious environmental effects (e.g., eutrophication, scale formation) when found in excess in natural or engineered environments. Commercial chemicals, fertilizers, sewage effluent, animal manure, and agricultural waste are the major sources of P pollution. But there is limited P resources worldwide. Therefore, the fate, effects, and transport of P in association with its removal, treatment, and recycling in natural and engineered systems are important. P removal and recycling technologies utilize different types of physical, biological, and chemical processes. Moreover, P minerals (struvite, vivianite, etc.) can precipitate and form scales in drinking water and wastewater systems. Hence, P minerals (e.g., struvite, vivianite etc.) are problems when left uncontrolled and unmonitored although their recovery is beneficial (e.g., slow release fertilizers, sustainable P sources, soil enhancers). Sources like wastewater, human waste, waste nutrient solution, etc. can be used for P recycling. This review paper extensively summarizes the importance and distribution of P in different environmental compartments, the effects of P in natural and engineered systems, P removal mechanisms through treatment, and recycling technologies specially focusing on various types of phosphate mineral precipitation. In particular, the factors controlling mineral (e.g., struvite and vivianite) precipitation in natural and engineered systems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aage H, Andersen B, Blom A, Jensen I (1997) The solubility of struvite. J Radioanal Nucl Chem 223(1–2):213–215

    Article  CAS  Google Scholar 

  • Acelas NY, Flórez E, López D (2015) Phosphorus recovery through struvite precipitation from wastewater: effect of the competitive ions. Desalin Water Treat 54(9):2468–2479

    Article  CAS  Google Scholar 

  • Adnan A, Koch FA, Mavinic DS (2003a) Pilot-scale study of phosphorus recovery through struvite crystallization—II: applying in-reactor supersaturation ratio as a process control parameter. J Environ Eng Sci 2(6):473–483

    Article  CAS  Google Scholar 

  • Adnan A, Mavinic DS, Koch FA (2003b) Pilot-scale study of phosphorus recovery through struvite crystallization examining the process feasibility. J Environ Eng Sci 2(5):315–324

    Article  CAS  Google Scholar 

  • Agric UD (1978) Improving soils with organic wastes. USDA, Washington, DC

    Google Scholar 

  • Alexander G, Stevens R (1976) Per capita phosphorus loading from domestic sewage. Water Res 10(9):757–764

    Article  CAS  Google Scholar 

  • Ali, M. 2005. Struvite crystallization from nutrient rich wastewater, Vol. Doctoral dissertation James Cook University

  • Amjad Z, Demadis KD (2015) Mineral scales and deposits: scientific and technological approaches. Elsevier

  • Andrade A, Schuiling R (2001) The chemistry of struvite crystallization. Min J 23:5–6

    Google Scholar 

  • Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2000) Handbook of mineralogy, volume IV, arsenates, phosphates, vanadates. 1–680, Mineralogical Society of America, Chantilly, Virginia

  • Azam H (2012) Iron reduction mediated increases in carbon oxidation and phosphorus precipitation in on-site wastewater systems, Vol. Doctoral dissertation University of Illinois at Urbana-Champaign

  • Azam HM, Finneran KT (2014) Fe (III) reduction-mediated phosphate removal as vivianite (Fe3(PO4)2·8H2O) in septic system wastewater. Chemosphere 97:1–9

  • Babić-Ivančić V, Kontrec J, Kralj D, Brečević L (2002) Precipitation diagrams of struvite and dissolution kinetics of different struvite morphologies. Croat Chem Acta 75(1):89–106

    Google Scholar 

  • Badgery-Parker J (2002) Managing waste water from intensive horticulture: a wetland system. 2nd ed.

  • Bassett, H., Bedwell, W.L. 1933. 210. Studies of phosphates. Part I. Ammonium magnesium phosphate and related compounds. Journal of the Chemical Society (Resumed), 854–871

  • Batstone D (2009) Towards a generalised physicochemical modelling framework. Rev Environ Sci Biotechnol 8(2):113–114

    Article  Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi S, Pavlostathis S, Rozzi A, Sanders W, Siegrist H, Vavilin V (2002) The IWA anaerobic digestion model no 1 (ADM1). Water Sci Technol 45(10):65–73

    Article  CAS  Google Scholar 

  • Baturin G (2003) Phosphorus cycle in the ocean. Lithol Miner Resour 38(2):101–119

    Article  CAS  Google Scholar 

  • Becher KD, Kalkhoff SJ, Schnoebelen DJ, Barnes KK, and Miller VE (2001) Water-quality assessment of the eastern Iowa basins—nitrogen, phosphorus, suspended sediment, and organic carbon in surface water, 1996–98

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press

  • Berg U, Ehbrecht A, Röhm E, Weidler P, Nüesch R (2007) Impact of calcite on phosphorus removal and recovery from wastewater using CSH-filled fixed bed filters. J Residuals Sci Technol 4(2):73–81

    CAS  Google Scholar 

  • Bhuiyan M, Mavinic D, Beckie R (2007) A solubility and thermodynamic study of struvite. Environ Technol 28(9):1015–1026

    Article  CAS  Google Scholar 

  • Bhuiyan MIH, Mavinic D, Koch F (2008) Thermal decomposition of struvite and its phase transition. Chemosphere 70(8):1347–1356

    Article  CAS  Google Scholar 

  • Blöcher C, Niewersch C, Schröder H, Gebhardt W, Melin T (2009) Optimierte Phosphor-Rückgewinnung aus Klärschlämmen durch ein Hybridverfahren aus Niederdruck-Nassoxidation und Nanofiltration (Verbundprojekt PHOXNAN). Final report of BMBF project 02WA0796/97/98

  • Boers P, De Bles F (1991) Ion concentrations in interstitial water as indicators for phosphorus release processes and reactions. Water Res 25(5):591–598

    Article  CAS  Google Scholar 

  • Boistelle R, Abbona F, Madsen HL (1983) On the transformation of struvite into newberyite in aqueous systems. Phys Chem Miner 9(5):216–222

    Article  CAS  Google Scholar 

  • Bouropoulos NC, Koutsoukos PG (2000) Spontaneous precipitation of struvite from aqueous solutions. J Cryst Growth 213(3–4):381–388

    Article  CAS  Google Scholar 

  • Bouwman A, Lee D, Asman W, Dentener F, Van Der Hoek K, Olivier J (1997) A global high-resolution emission inventory for ammonia. Glob Biogeochem Cycles 11(4):561–587

    Article  CAS  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic

  • Bowker RP, Stensel HD (1990) Phosphorus removal from wastewater. Noyes Data Corp

  • Box GE, Draper NR (1987) Empirical model-building and response surfaces. Wiley

  • Boyd CE, Tucker CS (2012) Pond aquaculture water quality management. Springer Science and Business Media

  • Bridger G, Salutsky ML, Starostka R (1962) Micronutrient sources, metal ammonium phosphates as fertilizers. J Agric Food Chem 10(3):181–188

    Article  CAS  Google Scholar 

  • Britton A, Sacluti F, Oldham W, Mohammed A, Mavinic D, Koch F (2007) Value from waste–struvite recovery at the city of Edmonton’s gold bar WWTP. Proceedings of the IWA Specialist Conference, (SC’07), Moncton, New Brunswick, Canada. Citeseer

  • Brogan J, Crowe M, Carty G (2001) Developing a national phosphorus balance for agriculture in Ireland: a discussion document. Environmental Protection Agency

  • Bruland KW (1983) Trace elements in sea water. In: Chemical oceanography, (Ed.) Riley, J.P. and Chester, R. (eds), London: Academic, pp. 157–220

  • Burkart MR, Simpkins WW, Morrow AJ, Gannon JM (2004) Occurrence of total dissolved phosphorus in unconsolidated aquifers and aquitards in Iowa. JAWRA J Am Water Resour Assoc 40(3):827–834

    Article  CAS  Google Scholar 

  • Cao X, Harris W (2007) Carbonate and magnesium interactive effect on calcium phosphate precipitation. Environ Sci Technol 42(2):436–442

    Article  CAS  Google Scholar 

  • Cardew P (2009) Measuring the benefit of orthophosphate treatment on lead in drinking water. J Water Health 7(1):123–131

    Article  CAS  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568

    Article  Google Scholar 

  • Carus-Corporation (2016) Phosphorous discharge limits and drinking water corrosion control plans http://www.caruscorporation.com/page/home/news/phosphates-in-drinking-water

  • Çelen I, Buchanan JR, Burns RT, Robinson RB, Raman DR (2007) Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure. Water Res 41(8):1689–1696

    Article  CAS  Google Scholar 

  • Cervantes FJ (2009) Environmental technologies to treat nitrogen pollution. IWA Publishing

  • Chauhan CK, Joshi MJ (2014) Growth and characterization of struvite-Na crystals. J Cryst Growth 401:221–226

    Article  CAS  Google Scholar 

  • Chirmuley D (1994) Struvite precipitation in WWPTS: causes and solutions. Water-Melbourne Then Artarmon 21:21–21

    CAS  Google Scholar 

  • Corbridge DEC (2013) Phosphorus: chemistry, biochemistry and technology, sixth edn. CRC

  • Cordell D, White S (2011) Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3(10):2027–2049

    Article  Google Scholar 

  • Cosgrove D (1967) Metabolism of organic phosphates in soil. Soil Biochemistry 1:216–228

    Google Scholar 

  • Cosgrove DJ, Irving G (1980) Inositol phosphates: their chemistry, biochemistry, and physiology. Elsevier Science and Technology

  • Dana ES (1949) A textbook of mineralogy. Wiley, New York

    Google Scholar 

  • Danvirutai C, Noisong P, Youngme S (2010) Some thermodynamic functions and kinetics of thermal decomposition of NH4MnPO4. H2O in nitrogen atmosphere. J Therm Anal Calorim 100(1):117–124

  • Darwish M, Aris A, Puteh MH, Abideen MZ, Othman MN (2016) Ammonium-nitrogen recovery from wastewater by struvite crystallization technology. Sep Purif Rev 45(4):261–274

    Article  CAS  Google Scholar 

  • Dhakal, S. 2008. A laboratory study of struvite precipitation for phosphorus removal from concentrated animal feeding operation wastewater

    Google Scholar 

  • Dill H (2015) The Hagendorf-Pleystein Province: the center of pegmatites in an ensialic orogen. Springer

  • Dockhorn T (2009) About the economy of phosphorus recovery. In: Proceedings of international conference on nutrient recovery from wastewater streams, Vancouver, Canada. IWA Publishing, London, UK, ISBN 9781843392323

  • Doyle JD, Oldring K, Churchley J, Price C, Parsons SA (2003) Chemical control of struvite precipitation. J Environ Eng 129(5):419–426

    Article  CAS  Google Scholar 

  • Doyle JD, Parsons SA (2002) Struvite formation, control and recovery. Water Res 36(16):3925–3940

    Article  CAS  Google Scholar 

  • Durrant A, Scrimshaw M, Stratful I, Lester J (1999) Review of the feasibility of recovering phosphate from wastewater for use as a raw material by the phosphate industry. Environ Technol 20(7):749–758

    Article  Google Scholar 

  • Edwards AC, Withers PJA (2007) Soil phosphorus management and water quality: a UK perspective. Soil Use Manag 14:124–130. https://doi.org/10.1111/j.1475-2743.1998.tb00630.x

    Article  Google Scholar 

  • Egle L, Rechberger H, Krampe J, Zessner M (2016) Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci Total Environ 571:522–542

    Article  CAS  Google Scholar 

  • Ehama M, Hashihama F, Kinouchi S, Kanda J, Saito H (2016) Sensitive determination of total particulate phosphorus and particulate inorganic phosphorus in seawater using liquid waveguide spectrophotometry. Talanta 153:66–70

    Article  CAS  Google Scholar 

  • Fattah, K. 2012. Finding nutrient-related problems in wastewater treatment plants. International Conference on Environmental, Biomedical and Biotechnology IPCBEE

  • Fattah KP (2010) Development of control strategies for the operation of a struvite crystallization process. University of British Columbia

  • Fixen P, Ludwick A, Olsen S (1983) Phosphorus and potassium fertilization of irrigated alfalfa on calcareous soils: II. Soil phosphorus solubility relationships 1. Soil Sci Soc Am J 47(1):112–117

    Article  CAS  Google Scholar 

  • Frossard E, Bauer J, Lothe F (1997) Evidence of vivianite in FeSO4-flocculated sludges. Water Res 31(10):2449–2454

  • Fuller WH (1972) Phosphorus: element and geochemistry. Ed. W.R. Fairbridge. The encyclopedia of geochemistry and environmental sciences, Encyclopedia of Earth Science series, IVA. New York; Van Nostrand Reinhold, 942–946

  • Gagnon V, Maltais-Landry G, Puigagut J, Chazarenc F, Brisson J (2010) Treatment of hydroponics wastewater using constructed wetlands in winter conditions. Water Air Soil Pollut 212(1–4):483–490

    Article  CAS  Google Scholar 

  • Galbraith S, Schneider P (2009) A review of struvite nucleation studies. International Conference on Nutrient Recovery from Wastewater Streams: May 10–13, 2009, the Westin Bayshore Hotel and Resort, Vancouver, British Columbia, Canada. IWA Publishing. pp. 69

  • Galleries, A. 2011. Amethyst galleries’ mineral gallery

    Google Scholar 

  • Gangoli N, Thodos G (1973) Phosphate adsorption studies. Journal (Water Pollution Control Federation):842–849

  • Girard JE (2013) Principles of environmental chemistry. Jones and Bartlett Publishers

  • Glasauer S, Weidler PG, Langley S, Beveridge TJ (2003) Controls on Fe reduction and mineral formation by a subsurface bacterium. Geochim Cosmochim Acta 67(7):1277–1288

    Article  CAS  Google Scholar 

  • Goldberg S (1992) Use of surface complexation models in soil chemical systems. Adv Agron 47:233–329

    Article  CAS  Google Scholar 

  • Graeser S, Postl W, Bojar H-P, Berlepsch P, Armbruster T, Raber T, Ettinger K, Walter F (2008) Struvite-(K), KMgPO4· 6H2O, the potassium equivalent of struvite—a new mineral. Eur J Mineral 20(4):629–633

    Article  CAS  Google Scholar 

  • Green, C., Johnson, P., Allen, V., Crossland, S. 2004. Treatment technologies for phosphorus removal from water derived from cattle feed yards. Plant and Soil Science Department and Agricultural and Applied Economics Department, Texas Tech University

  • Gupta S, Häni H, Schindler P (1979) Factors affecting the degree of phosphate-removal in the system FeCl3-orthophosphate and nature of the precipitates. Z Pflanzenernähr Bodenkd 142(5):705–718

    Article  CAS  Google Scholar 

  • Han DS, Abdel-Wahab A, Batchelor B (2010) Surface complexation modeling of arsenic (III) and arsenic (V) adsorption onto nanoporous titania adsorbents (NTAs). J Colloid Interface Sci 348(2):591–599

    Article  CAS  Google Scholar 

  • Hao X-D, Wang C-C, Lan L, Van Loosdrecht M (2008) Struvite formation, analytical methods and effects of pH and Ca2+. Water Sci Technol 58(8):1687–1692

    Article  Google Scholar 

  • Heinzmann B, Betriebe BW (2001) Phosphorus recovery in wastewater treatment plants. Second International Conference

  • Henze M, Gujer W, Mino T, Van Loosdrecht M (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Publishing

  • Hislop H (2007) The nutrient cycle: closing the loop. Green Aliance

  • Hizal J, Apak R (2006) Modeling of copper (II) and lead (II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid. J Colloid Interface Sci 295(1):1–13

    Article  CAS  Google Scholar 

  • Holman IP, Howden NJ, Bellamy P, Willby N, Whelan MJ, Rivas-Casado M (2010) An assessment of the risk to surface water ecosystems of groundwater P in the UK and Ireland. Sci Total Environ 408(8):1847–1857

    Article  CAS  Google Scholar 

  • Holtan H, Kamp-Nielsen L, Stuanes A (1988) Phosphorus in soil, water and sediment: an overview. In: Phosphorus in freshwater ecosystems, Springer, pp. 19–34

  • Housecroft C, Sharpe A (2008) The group 16 elements. Inorganic chemistry. 3rd ed. New Jersey: Pearson, 520

  • Hultman B, Levlin E, Stark K (2001) Phosphorus recovery from sewage sludges: research and experiences in Nordic countries. SCOPE 41:29–33

    Google Scholar 

  • Isherwood K (2000) Mineral fertilizer use and the environment by international fertilizer industry association. Revised Edition, Paris

    Google Scholar 

  • Jaffer Y, Clark T, Pearce P, Parsons S (2002) Potential phosphorus recovery by struvite formation. Water Res 36(7):1834–1842

    Article  CAS  Google Scholar 

  • Jenkins D, Ferguson JF, Menar AB (1971) Chemical processes for phosphate removal. Water Res 5(7):369–389

    Article  CAS  Google Scholar 

  • Jenkins D, Hermanowicz S (1991) Principles of chemical phosphate removal. In: Phosphorous and nitrogen removal from municipal wastewater: principles and practice. 2nd ed. Lewis, Boca Raton, Florida. 1991. p 91–110. 15 fig, 4 tab, 23 ref.

  • Johnsson MS-A, Nancollas GH (1992) The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol Med 3(1):61–82

    Article  CAS  Google Scholar 

  • Johnston A, Steen I (2000) Understanding phosphorus and its use in agriculture. European Fertilizer Manufacturers Association

  • Jonard M, Fürst A, Verstraeten A, Thimonier A, Timmermann V, Potočić N, Waldner P, Benham S, Hansen K, Merilä P (2015) Tree mineral nutrition is deteriorating in Europe. Glob Chang Biol 21(1):418–430

    Article  Google Scholar 

  • Kampf AR, Adams PM, Barwood H, Nash BP (2017) Fluorwavellite, Al3 (PO4) 2 (OH) 2F· 5H2O, the fluorine analog of wavellite. Am Mineral 102(4):909–915

    Article  Google Scholar 

  • Kataki S, West H, Clarke M, Baruah DC (2016) Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour Conserv Recycl 107:142–156

    Article  Google Scholar 

  • Kołodyńska D (2011a) Chelating agents of a new generation as an alternative to conventional chelators for heavy metal ions removal from different waste waters. INTECH Open Access Publisher

  • Kołodyńska D (2011b) Chelating agents of a new generation as an alternative to conventional chelators for heavy metal ions removal from different waste waters. In: Expanding issues in desalination, InTech

  • Koralewska J, Piotrowski K, Wierzbowska B, Matynia A (2009) Kinetics of reaction-crystallization of struvite in the continuous draft tube magma type crystallizers—influence of different internal hydrodynamics. Chin J Chem Eng 17(2):330–339

    Article  CAS  Google Scholar 

  • Kozik A, Hutnik N, Matynia A, Gluzinska J, Piotrowski K (2011) Recovery of phosphate (V) ions from liquid waste solutions containing organic impurities. Chemik 65(7):675–686

    CAS  Google Scholar 

  • Kwon MJ, Boyanov MI, Antonopoulos DA, Brulc JM, Johnston ER, Skinner KA, Kemner KM, O’Loughlin EJ (2014) Effects of dissimilatory sulfate reduction on FeIII (hydr)oxide reduction and microbial community development. Geochim Cosmochim Acta 129:177–190

  • Kwon MJ, O’Loughlin EJ, Boyanov MI, Brulc JM, Johnston ER, Kemner KM, Antonopoulos DA (2016) Impact of organic carbon electron donors on microbial community development under iron- and sulfate-reducing conditions. PLoS One 11(1):e0146689

    Article  CAS  Google Scholar 

  • Lavelle P, Dugdale R, Scholes R, Berhe A, Carpenter E, Codispoti L, Izac A, Lemoalle J, Luizao F, Treguer P (2005) Nutrient cycling. In: Ecosystems and human well-being: current state and trends: findings of the condition and trends working group. Island Press, Washington

    Google Scholar 

  • Lazarova V, Savoye P, Janex M, Blatchley E, Pommepuy M (1999) Advanced wastewater disinfection technologies: state of the art and perspectives. Water Sci Technol 40(4–5):203–213

    Article  CAS  Google Scholar 

  • Le Corre KS, Valsami-Jones E, Hobbs P, Jefferson B, Parsons SA (2007) Struvite crystallisation and recovery using a stainless steel structure as a seed material. Water Res 41(11):2449–2456

    Article  CAS  Google Scholar 

  • Lee J, Rahman M, Ra C (2009) Dose effects of Mg and PO4 sources on the composting of swine manure. J Hazard Mater 169(1):801–807

    Article  CAS  Google Scholar 

  • Lee JY, Rahman A, Behrens J, Brennan C, Ham B, Kim HS, Nho CW, Yun S-T, Azam H, Kwon MJ (2018) Nutrient removal from hydroponic wastewater by a microbial consortium and a culture of Paracercomonas saepenatans. New Biotechnol 41:15–24

    Article  CAS  Google Scholar 

  • Levin GV, Shapiro J (1965) Metabolic uptake of phosphorus by wastewater organisms. Journal (Water Pollution Control Federation):800–821

  • Li Z, Ren X, Zuo J, Liu Y, Duan E, Yang J, Chen P, Wang Y (2012) Struvite precipitation for ammonia nitrogen removal in 7-aminocephalosporanic acid wastewater. Molecules 17(2):2126–2139

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley

  • Liu Y, Kumar S, Kwag JH, Ra C (2013) Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review. J Chem Technol Biotechnol 88(2):181–189

    Article  CAS  Google Scholar 

  • Lowe EF, Battoe LE, Stites DL, Coveney MF (1992) Particulate phosphorus removal via wetland filtration: an examination of potential for hypertrophic lake restoration. Environ Manag 16(1):67–74

    Article  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press on Demand

  • Ma N, Rouff AA (2012) Influence of pH and oxidation state on the interaction of arsenic with struvite during mineral formation. Environ Sci Technol 46(16):8791–8798

    Article  CAS  Google Scholar 

  • Madsen HEL, Hansen HCB (2014) Kinetics of crystal growth of vivianite, Fe3(PO4)2 8H2O, from solution at 25, 35 and 45° C. J Cryst Growth 401:82–86

    Article  CAS  Google Scholar 

  • Matynia A, Wierzbowska B, Hutnik N, Mazienczuk A, Kozik A, Piotrowski K (2013) Separation of struvite from mineral fertilizer industry wastewater. Procedia Environ Sci 18:766–775

    Article  CAS  Google Scholar 

  • McDowell R, Sharpley A, Folmar G (2003) Modification of phosphorus export from an eastern USA catchment by fluvial sediment and phosphorus inputs. Agric Ecosyst Environ 99(1):187–199

    Article  CAS  Google Scholar 

  • McGowan G, Prangnell J (2006) The significance of vivianite in archaeological settings. Geoarchaeology 21(1):93–111

    Article  Google Scholar 

  • Mekmene O, Quillard S, Rouillon T, Bouler J-M, Piot M, Gaucheron F (2009) Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions. Dairy Sci Technol 89(3–4):301–316

    Article  CAS  Google Scholar 

  • Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci 282(4):401–450

    Article  CAS  Google Scholar 

  • Meyers RH, Montgomery DC (2002) Response surface methodology. Process and product optimisation using design experiments, second edn. Wiley, New York, NY

  • Miot J, Benzerara K, Morin G, Bernard S, Beyssac O, Larquet E, Kappler A, Guyot F (2009) Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria. Geobiology 7(3):373–384

    Article  CAS  Google Scholar 

  • Möller, G. 2006. Absolute (1000 fold) phosphorus removal: performance, mechanisms and engineering analysis of iron-based reactive filtration and coupled CEPT at the Hayden, ID WWTP. Session P2 in WERF

  • Montag D, Pinnekamp J, Dittrich C, Rath W, Schmidt M, Pfennig A, Seyfried A, Grömping M, van Norden H, Doetsch P (2011) Rückgewinnung von Phosphor aus Klärschlammasche mittels des nasschemischen PASCH-Verfahrens. in: Gewässerschutz-Wasser-Abwasser 228. Förderinitiative “Kreislaufwirtschaft für Pflanzennährstoffe, insbesondere Phosphor”. Schlusspräsentation. Aachen. Report

  • Montag DM, Pinnekamp J (2008) Phosphorrückgewinnung bei der Abwasserreinigung: Entwicklung eines Verfahrens zur Integration in kommunale Kläranlagen. Lehrstuhl für Siedlungswasserwirtschaft und Siedlungsabfallwirtschaft und Institut für Siedlungswasserwirtschaft

  • Montgomery JM, Engineers C (1985) Water treatment principles and design. Wiley, New York

    Google Scholar 

  • Morel F, Hering J (1993) Principles and applications of aquatic chemistry. Wiley, New York

    Google Scholar 

  • Morf L (2012) Phosphor aus Klärschlamm—Strategie des Kanton Zürichs und der Schweiz (Phosphorus from sewage sludge—the strategy of the Canton of Zürich and Switzerland). Flessner Tagung Wasser-und Abfallwirtschaft:14–16

  • Morse G, Brett S, Guy J, Lester J (1998a) Phosphorus removal and recovery technologies. Sci Total Environ 212(1):69–81

    Article  CAS  Google Scholar 

  • Morse G, Brett S, Guy J, Lester J (1998b) Review: Phosphorus removal and recovery technologies. Sci Total Environ 212(1):69–81

    Article  CAS  Google Scholar 

  • Morton SC, Edwards M (2005) Reduced phosphorus compounds in the environment. Crit Rev Environ Sci Technol 35(4):333–364

    Article  CAS  Google Scholar 

  • Morton SC, Glindemann D, Edwards MA (2003) Phosphates, phosphites, and phosphides in environmental samples. Environ Sci Technol 37(6):1169–1174

    Article  CAS  Google Scholar 

  • Muryanto S, Bayuseno A (2014) Influence of Cu2+ and Zn2+ as additives on crystallization kinetics and morphology of struvite. Powder Technol 253:602–607

    Article  CAS  Google Scholar 

  • Nelson NO, Mikkelsen RL, Hesterberg DL (2003) Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg: P ratio and determination of rate constant. Bioresour Technol 89(3):229–236

    Article  CAS  Google Scholar 

  • Nolan BT, Stoner JD (2000) Nutrients in groundwaters of the conterminous United States, 1992–1995. Environ Sci Technol 34(7):1156–1165

    Article  CAS  Google Scholar 

  • Nörtemann B (2005) Biodegradation of chelating agents: EDTA, DTPA, PDTA, NTA, and EDDS. Biogeochemistry of chelating agents, chapter 8, pp 150–170, https://doi.org/10.1021/bk-2005-0910. ch008, ACS Symposium Series, Vol. 910

  • Nowack B (2003) Environmental chemistry of phosphonates. Water Res 37(11):2533–2546

    Article  CAS  Google Scholar 

  • Nowack, B., VanBriesen, J.M. 2005. Chelating agents in the environment. Biogeochemistry of chelating agents, 1–18

  • Nowak B, Perutka L, Aschenbrenner P, Kraus P, Rechberger H, Winter F (2011) Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash. Waste Manag 31(6):1285–1291

    Article  CAS  Google Scholar 

  • Nriagu J, Dell C (1974) Diagenetic formation of iron phosphates in recent lake sediments. Am Mineral 59:934–946

    CAS  Google Scholar 

  • Nriagu JO (1984) Phosphate minerals: their properties and general modes of occurrence. In: Phosphate minerals, Springer, pp. 1–136

  • Nriagu JO (1972) Stability of vivianite and ion-pair formation in the system Fe3(PO4)2-H3PO4-H2O. Geochim Cosmochim Acta 36(4):459–470

    Article  CAS  Google Scholar 

  • Nunes, A.P.L. 2012. Estudos electrocineticos e de flotabilidade de wavellita. turquesa, senegalita e apatita, Vol. Tese de Doutorado, Escola de Engenharia da UFMG

  • Nunes APL, Peres AEC, De Araujo AC, Valadão GES (2011) Electrokinetic properties of wavellite and its floatability with cationic and anionic collectors. J Colloid Interface Sci 361(2):632–638

    Article  CAS  Google Scholar 

  • O’Connell DW, Jensen MM, Jakobsen R, Thamdrup B, Andersen TJ, Kovacs A, Hansen HCB (2015) Vivianite formation and its role in phosphorus retention in Lake Ørn, Denmark. Chem Geol 409:42–53

    Article  CAS  Google Scholar 

  • Oehmen A, Saunders AM, Vives MT, Yuan Z, Keller J (2006) Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. J Biotechnol 123(1):22–32

    Article  CAS  Google Scholar 

  • Ohashi S, Van Wazer JR (1959) Structure and properties of the condensed phosphates. XIV. Calcium polyphosphates. J Am Chem Soc 81(4):830–832

    Article  CAS  Google Scholar 

  • Ohlinger K, Young T, Schroeder E (1998) Predicting struvite formation in digestion. Water Res 32(12):3607–3614

    Article  CAS  Google Scholar 

  • Ohlinger KN, Young TM, Schroeder ED (1999) Kinetics effects on preferential struvite accumulation in wastewater. J Environ Eng 125(8):730–737

    Article  CAS  Google Scholar 

  • Oliver RL, Ganf GG (2000) Freshwater blooms. In: The ecology of cyanobacteria, Springer, pp. 149–194

  • Panasiuk O (2010a) Phosphorus removal and recovery from wastewater using magnetite

  • Panasiuk O (2010b) Phosphorus removal and recovery from wastewater using magnetite

  • Park J, Craggs R, Sukias J (2008) Treatment of hydroponic wastewater by denitrification filters using plant prunings as the organic carbon source. Bioresour Technol 99(8):2711–2716

    Article  CAS  Google Scholar 

  • Parkhurst DL, Stollenwerk KG, Colman JA (2003) Reactive-transport simulation of phosphorus in the sewage plume at the Massachusetts Military Reservation, Cape Cod, Massachusetts. US Department of the Interior, US Geological Survey

  • Paul EA, Clark PF (1996) Soil microbiology and biochemistry. Academic, San Diego, CA

    Google Scholar 

  • Pereira AC, Papini RM (2015) Processes for phosphorus removal from iron ore—a review. Rem: Revista Escola de Minas 68(3):331–335

    Google Scholar 

  • Pierzynski GM, McDowell RW (2005) Chemistry, cycling, and potential movement of inorganic phosphorus in soils. Phosphorus: agriculture and the environment (phosphorusagric), 53–86

  • Prasad M (2013) A literature review on the availability of phosphorus from compost in relation to the nitrate regulations SI378 of 2006. Small scale study report prepared for the Environmental Protection Agency by Cre-composting Association of Ireland, STRIVE-program, Republic of Ireland

  • Prywer J, Olszynski M (2013) Influence of disodium EDTA on the nucleation and growth of struvite and carbonate apatite. J Cryst Growth 375:108–114

    Article  CAS  Google Scholar 

  • Rahman MM, Liu Y, Kwag J-H, Ra C (2011) Recovery of struvite from animal wastewater and its nutrient leaching loss in soil. J Hazard Mater 186(2):2026–2030

    Article  CAS  Google Scholar 

  • Rahman MM, Salleh MAM, Rashid U, Ahsan A, Hossain MM, Ra CS (2014) Production of slow release crystal fertilizer from wastewaters through struvite crystallization—a review. Arab J Chem 7(1):139–155

    Article  CAS  Google Scholar 

  • Ralph J, Chau I (2014) Mindat. org—the mineral and locality database

  • Rayner-Canham G, Overton T (2003) Descriptive inorganic chemistry. Macmillan

  • Reddy KR, O’Connor GA, Schelske CL (1999) Phosphorus biogeochemistry of sub-tropical ecosystems. CRC

  • Reimann C, de Caritat P (1998) Chemical elements in the environment—factsheets for the geochemist and environmental scientist. Springer, Berlin, p 1998

    Google Scholar 

  • Rittmann BE, Mayer B, Westerhoff P, Edwards M (2011) Capturing the lost phosphorus. Chemosphere 84(6):846–853

    Article  CAS  Google Scholar 

  • Robertson W (2003) Enhanced attenuation of septic system phosphate in noncalcareous sediments. Ground Water 41(1):48–56

    Article  CAS  Google Scholar 

  • Ronteltap M, Maurer M, Gujer W (2007) Struvite precipitation thermodynamics in source-separated urine. Water Res 41(5):977–984

    Article  CAS  Google Scholar 

  • Rosenqvist IT (1970) Formation of vivianite in Holocene clay sediments. Lithos 3(4):327–334

    Article  CAS  Google Scholar 

  • Rothe M, Frederichs T, Eder M, Kleeberg A, Hupfer M (2014) Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment: a novel analytical approach. Biogeosciences 11(18):5169–5180

    Article  Google Scholar 

  • Rothe M, Kleeberg A, Hupfer M (2016) The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. Earth Sci Rev 158:51–64

    Article  CAS  Google Scholar 

  • Rouff AA (2012) Sorption of chromium with struvite during phosphorus recovery. Environ Sci Technol 46(22):12493–12501

    Article  CAS  Google Scholar 

  • Rouff AA (2013) Temperature-dependent phosphorus precipitation and chromium removal from struvite-saturated solutions. J Colloid Interface Sci 392:343–348

    Article  CAS  Google Scholar 

  • Rouff AA, Ramlogan MV, Rabinovich A (2016) Synergistic removal of zinc and copper in greenhouse waste effluent by struvite. ACS Sustainable Chemistry and Engineering 4(3):1319–1327

    Article  CAS  Google Scholar 

  • Rouzies D, Millet J (1993) Mössbauer study of synthetic oxidized vivianite at room temperature. Hyperfine Interactions 77(1):19–28

    Article  CAS  Google Scholar 

  • Rybicki S (1997) Advances wastewater treatment: phosphorus removal from wastewater. Royal Institute of Technology

  • Rybicki SM (1998) New technologies of phosphorus removal from wastewater. Proc. Of a Polish-Swedish Seminar, Joint Polish Swedish Reports, Report

  • Ryu H-D, Kim D, Lee S-I (2008) Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater. J Hazard Mater 156(1–3):163–169

    Article  CAS  Google Scholar 

  • Sabbag H, Brenner A, Nikolski A, Borojovich EJ (2015) Prevention and control of struvite and calcium phosphate precipitation by chelating agents. Desalin Water Treat 55(1):61–69

    Article  CAS  Google Scholar 

  • Sakthivel SR, Tilley E, Udert KM (2012) Wood ash as a magnesium source for phosphorus recovery from source-separated urine. Science of the Total Environment, 419, 68–75

  • Savenko V, Zakharova E (1997) Main principles of the behavior of phosphorus in river discharge. Vodnye Resursy 24(2):159–168

    Google Scholar 

  • Scheidig K, Mallon J, Schaaf M, Riedl R (2013) P-Recycling-Dünger aus der Schmelzvergasung von Klärschlamm und Klärschlammasche. KA–Korrespondenz Abwasser, Abfall 10:845–850

    Google Scholar 

  • Sedlak RI (1991) Phosphorus and nitrogen removal from municipal wastewater: principles and practice. Second edition. CRC

  • Serrano S, O’Day PA, Vlassopoulos D, García-González MT, Garrido F (2009) A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils. Geochim Cosmochim Acta 73(3):543–558

    Article  CAS  Google Scholar 

  • Sharp R, Vadiveloo E, Fergen R, Moncholi M, Pitt P, Wankmuller D, Latimer R (2013) A theoretical and practical evaluation of struvite control and recovery. Water Environ Res 85(8):675–686

    Article  CAS  Google Scholar 

  • Sharpley A, Foy B, Withers P (2000) Practical and innovative measures for the control of agricultural phosphorus losses to water: an overview. J Environ Qual 29(1):1–9

    Article  CAS  Google Scholar 

  • Shin H. S., Lee S. M. (1998) Environmental Technology 19(3):283-290 https://doi.org/10.1080/09593331908616682 Removal of Nutrients in Wastewater by using Magnesium Salts

  • Shu L, Schneider P, Jegatheesan V, Johnson J (2006) An economic evaluation of phosphorus recovery as struvite from digester supernatant, Bioresource Technology, Volume 97, Issue 17, November 2006, Pages 2211–2216. https://www.sciencedirect.com/science/article/pii/S0960852405005304

  • Sims, J.T. 1998. Soil testing for phosphorus: environmental uses and implications. So. Coop. Series Bull. No. 389. Univ. Delaware, Newark, DE

  • Smil V (1999) Nitrogen in crop production: an account of global flows. Glob Biogeochem Cycles 13(2):647–662

    Article  CAS  Google Scholar 

  • Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25(1):53–88

    Article  Google Scholar 

  • Sø HU, Postma D, Jakobsen R, Larsen F (2011) Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling. Geochim Cosmochim Acta 75(10):2911–2923

    Article  CAS  Google Scholar 

  • Song Y, Yuan P, Zheng B, Peng J, Yuan F, Gao Y (2007) Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater. Chemosphere 69(2):319–324

    Article  CAS  Google Scholar 

  • Stabnikov V, Tay S-L, Tay D-K, Ivanov VN (2004) Effect of iron hydroxide on phosphate removal during anaerobic digestion of activated sludge. Appl Biochem Microbiol 40(4):376–380

    Article  CAS  Google Scholar 

  • Steen, I. 1998. Management of a non-renewable resource. Phosphorus and potassium (217), 25–31

  • Stenmark, L. 2003. Super-critical fluid technologies within Chematur Engineering AB. Proceedings from the third international disposal conference; Karlskoga; Sweden; 10–11 November; 2003. Linköping University Electronic Press

  • Stratful I, Scrimshaw M, Lester J (2001) Conditions influencing the precipitation of magnesium ammonium phosphate. Water Res 35(17):4191–4199

    Article  CAS  Google Scholar 

  • Strom PF (2006) Technologies to remove phosphorus from wastewater. Rutgers University, New Brunswick, New Jersey, p 18

    Google Scholar 

  • Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley

  • Sun W-D, Wang J-Y, Zhang K-C, Wang X-L (2010) Study on precipitation of struvite and struvite-K crystal in goats during onset of urolithiasis. Res Vet Sci 88(3):461–466

    Article  CAS  Google Scholar 

  • Svanks K (1971) Precipitation of phosphates from water with ferrous salts. Ohio State University, Water Resources Center

    Google Scholar 

  • Talbot P, De la Noüe J (1993) Tertiary treatment of wastewater with Phormidium bohneri (Schmidle) under various light and temperature conditions. Water Res 27(1):153–159

    Article  CAS  Google Scholar 

  • Taxer K, Bartl H (2004) On the dimorphy between the variscite and clinovariscite group: refined finestructural relationship of strengite and clinostrengite, Fe (PO4)2. 2H2O. Cryst Res Technol 39(12):1080–1088

  • Taylor KG, Boult S (2007) The role of grain dissolution and diagenetic mineral precipitation in the cycling of metals and phosphorus: a study of a contaminated urban freshwater sediment. Appl Geochem 22(7):1344–1358

    Article  CAS  Google Scholar 

  • Taylor KG, Hudson-Edwards KA, Bennett AJ, Vishnyakov V (2008) Early diagenetic vivianite [Fe 3 (PO 4) 2· 8H 2 O] in a contaminated freshwater sediment and insights into zinc uptake: a μ-EXAFS, μ-XANES and Raman study. Appl Geochem 23(6):1623–1633

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677

    Article  CAS  Google Scholar 

  • Uysal A, Yilmazel YD, Demirer GN (2010) The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J Hazard Mater 181(1):248–254

    Article  CAS  Google Scholar 

  • Van Starkenburg, W., Rijs, G. 1988. Phosphate in sewage and sewage treatment. Proc. of SCOPE phosphorus cycles workshop

  • Veeramani H, Alessi DS, Suvorova EI, Lezama-Pacheco JS, Stubbs JE, Sharp JO, Dippon U, Kappler A, Bargar JR, Bernier-Latmani R (2011) Products of abiotic U (VI) reduction by biogenic magnetite and vivianite. Geochim Cosmochim Acta 75(9):2512–2528

    Article  CAS  Google Scholar 

  • Veith J, Sposito G (1977) Reactions of aluminosilicates, aluminum hydrous oxides, and aluminum oxide with o-phosphate: the formation of X-ray amorphous analogs of variscite and montebrasite 1. Soil Sci Soc Am J 41(5):870–876

    Article  CAS  Google Scholar 

  • Volk C, Dundore E, Schiermann J, Lechevallier M (2000) Practical evaluation of iron corrosion control in a drinking water distribution system. Water Res 34(6):1967–1974

    Article  CAS  Google Scholar 

  • Walpersdorf E, Koch CB, Heiberg L, O’Connell DW, Kjaergaard C, Hansen HB (2013) Does vivianite control phosphate solubility in anoxic meadow soils? Geoderma 193:189–199

    Article  CAS  Google Scholar 

  • Wang C, Jiang H-L (2016) Chemicals used for in situ immobilization to reduce the internal phosphorus loading from lake sediments for eutrophication control. Crit Rev Environ Sci Technol 46(10):947–997

    Article  CAS  Google Scholar 

  • Wang H, Wang Xj, Wang Ws, Yan Xb, Xia P, Chen J, Zhao Jf (2016) Modeling and optimization of struvite recovery from wastewater and reusing for heavy metals immobilization in contaminated soil. J Chem Technol Biotechnol 91:3045–3052

    Article  CAS  Google Scholar 

  • Wind, T. 2007. The role of detergents in the phosphate-balance of European surface waters. Official Publication of the European Water Association (EWA)

  • Woodard S (2006) Magnetically enhanced coagulation for phosphorus removal. Session B2 in WERF

  • Wu Q, Bishop PL (2004) Enhancing struvite crystallization from anaerobic supernatant. J Environ Eng Sci 3(1):21–29

    Article  CAS  Google Scholar 

  • Xia W-T, Ren Z-D, Gao Y-F (2011) Removal of phosphorus from high phosphorus iron ores by selective HCl leaching method. J Iron Steel Res Int 18(5):1–4

    Article  CAS  Google Scholar 

  • Yetilmezsoy K, Sapci-Zengin Z (2009) Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer. J Hazard Mater 166(1):260–269

    Article  CAS  Google Scholar 

  • Zanini L, Robertson W, Ptacek C, Schiff S, Mayer T (1998) Phosphorus characterization in sediments impacted by septic effluent at four sites in central Canada. J Contam Hydrol 33(3):405–429

    Article  CAS  Google Scholar 

  • Zhang X (2012) Factors influencing iron reduction-induced phosphorus precipitation. Environ Eng Sci 29(6):511–519

    Article  CAS  Google Scholar 

  • Zhao, Q., Zhang, T., Frear, C., Bowers, K., Harrison, J., and Chen, S. 2010. Phosphorous recovery technology in conjunction with dairy anaerobic digestion.CFF final report-AD component

Download references

Funding

This work was supported by a Nuclear Core Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government’s Ministry of Trade, Industry and Energy (No. 20171510300670), a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2018R1A2B6001660), and the Environmental Engineering Program of Manhattan College, NY, USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossain M Azam or Man Jae Kwon.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, H.M., Alam, S.T., Hasan, M. et al. Phosphorous in the environment: characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems. Environ Sci Pollut Res 26, 20183–20207 (2019). https://doi.org/10.1007/s11356-019-04732-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04732-y

Keywords

Navigation