Skip to main content

ZnO@ porous graphite nanocomposite from waste for superior photocatalytic activity

Abstract

In this work, a new type of advanced 3D mesoporous carbon nanocomposites derived from Zn dust/PET bottle mixed waste with a high surface area is created. Interestingly, simultaneous transformation of Zn metal into ZnO nanoparticles and PET bottle waste to porous carbon materials occurred upon thermal treatment at 700 °C. The effect of the amount of Zn metal on the prepared materials has been studied. The carbon material-based waste presented very large surface area (up to 684.5 m2/g) with pore size distribution (18.47–16.88 nm). The SEM and TEM analysis revealed that the produced carbon materials have 3D porous dense layers with a gradient pore structure. The created waste-based nanocomposite exhibited an enhanced photocatalytic performance for the degradation of organic dyes (methylene blue and malachite green). It is believed that the presented work not only provides a sustainable approach to the creation of new nanocomposites of ZnO-mesoporous carbon materials for the application in photocatalysis but also introduces a new way of upcycling of mixed waste materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ajji A et al (1995) Amorphous orientation of poly (ethylene terephthalate) by X-ray diffraction in combination with Fourier transform infra-red spectroscopy. Polymer Elsevier 36(21):4023–4030

    Article  CAS  Google Scholar 

  2. Akhavan O, Bijanzadm K, Mirsepah A (2014) Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Adv 4:20441–20448

    Article  CAS  Google Scholar 

  3. Anene AF et al (2018) Experimental study of thermal and catalytic pyrolysis of plastic waste components. Sustainability 10:3979

    Article  Google Scholar 

  4. Buekens AG, Huang H (1998) Catalytic plastics cracking for recovery of gasoline-range hydrocarbons from municipal plastic wastes. Resour Conserv Recycl Elsevier 23(3):163–181

    Article  Google Scholar 

  5. Chen J-C, Tang C-T (2007) Preparation and application of granular ZnO/Al2O3 catalyst for the removal of hazardous trichloroethylene. J Hazard Mater Elsevier 142(1–2):88–96

    Article  CAS  Google Scholar 

  6. Chen D et al (2015) Reprint of: pyrolysis technologies for municipal solid waste: a review. Waste Manag Elsevier 37:116–136

    Article  Google Scholar 

  7. Dai H (2002) Carbon nanotubes: opportunities and challenges. Surf Sci Elsevier 500(1–3):218–241

    Article  CAS  Google Scholar 

  8. De Volder MFL et al (2013) Carbon nanotubes: present and future commercial applications. Sci Am Assoc Adv Sci 339(6119):535–539

    Google Scholar 

  9. Dědková K et al (2015) ZnO/graphite composites and its antibacterial activity at different conditions. J Photochem Photobiol B 151:256–263

    Article  CAS  Google Scholar 

  10. Dervishi E et al (2009) Carbon nanotubes: synthesis, properties, and applications. Part Sci Technol Taylor & Francis 27(2):107–125

    Article  CAS  Google Scholar 

  11. Ding Y et al (2016) Cellulose tailored Anatase TiO2 nanospindles in three-dimensional graphene composites for high-performance supercapacitors. ACS Appl Mater Interfaces 8(19):12165–12175

    Article  CAS  Google Scholar 

  12. Ding J et al (2017) Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity. Nanotechnology 28:395404

    Article  CAS  Google Scholar 

  13. Dong Y et al (2015) Graphene/acid assisted facile synthesis of structure-tuned Fe3O4 and graphene composites as anode materials for lithium ion batteries. Carbon Elsevier 86:310–317

    Article  CAS  Google Scholar 

  14. Dvorak P, Jandova J (2005) Hydrometallurgical recovery of zinc from hot dip galvanizing ash. Hydrometallurgy Elsevier 77(1–2):29–33

    Article  CAS  Google Scholar 

  15. Esfandiari A, Kaghazchi T, Soleimani M (2012) Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes. J Taiwan Inst Chem Eng Elsevier 43(4):631–637

    Article  CAS  Google Scholar 

  16. Fu H et al (2017) Characteristics of pore structure and fractal dimension of low-rank coal: a case study of lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel 193:254–264

    Article  CAS  Google Scholar 

  17. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater. Nature Publishing Group 6(3):183

    Article  CAS  Google Scholar 

  18. Goodman I, Nesbitt BF (1960) The structures and reversible polymarization of cyclic oligomers from poly(ethylene terphthalte). Polymer 1:384–396

    Article  CAS  Google Scholar 

  19. Gottardi S et al (2014) Self-assembly: cyano-functionalized triarylamines on au(111): competing intermolecular versus molecule/substrate interactions. Adv Mater Interfaces 2014(1):1300150

    Google Scholar 

  20. Gupta A, Johnson EF, Schlossel RH (1987) Investigation into the ion exchange of the cyanide complexes of zinc (2+), cadmium (2+), and copper (1+) ions. Ind Eng Chem Res. ACS Publications 26(3):588–594

    Article  CAS  Google Scholar 

  21. Howard JB et al (1991) Fullerenes C60 and C70 in flames. Nature. Nature Publishing Group 352(6331):139

    CAS  Google Scholar 

  22. Howard JB, Chowdhury KD, Vander Sande JB (1994) Carbon shells in flames. Nature. Nature Publishing Group 370(6491):603

    Google Scholar 

  23. Hujuri U, Ghoshal AK, Gumma S (2013) Temperature-dependent pyrolytic product evolution profile for polyethylene terephthalate. J Appl Polym Sci 130:3993–4000

    CAS  Google Scholar 

  24. Irwin RJ et al (1997) Environmental contaminants encyclopedia: Lead entry. National Parks Service, Water Resources Division, Fort Collins

    Google Scholar 

  25. Jadhav U, Hocheng H (2015) Hydrometallurgical recovery of metals from large printed circuit board pieces. Sci Rep Nat Publ Group 5:14574

    CAS  Google Scholar 

  26. Jan MR, Shah J, Gulab H (2013) Catalytic conversion of waste high-density polyethylene into useful hydrocarbons. Fuel. Elsevier 105:595–602

    Article  CAS  Google Scholar 

  27. Kim SC, Kim SJ, Yu EY (1997) The effect of alkali metal salts on ZnO$α$-Al2O3 and MnO2 catalysts for the oxidative coupling of methane. Appl Catal A Gen. Elsevier 150(1):63–76

    Article  CAS  Google Scholar 

  28. Lerici LC, Renzini MS, Pierella LB (2015) Chemical catalyzed recycling of polymers: catalytic conversion of PE, PP and PS into fuels and chemicals over HY. Procedia Mater Sci. Elsevier 8:297–303

    Article  CAS  Google Scholar 

  29. Leung AOW et al (2008) Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in Southeast China. Environ Sci Technol ACS Publications 42(7):2674–2680

    Article  CAS  Google Scholar 

  30. Linden D (1995) Handbook of batteries. In: Fuel and energy abstracts, p 265

    Google Scholar 

  31. Lin-Vien D et al (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Elsevier

  32. Lovett S, Berruti F, Behie LA (1997) Ultrapyrolytic upgrading of plastic wastes and plastics/heavy oil mixtures to valuable light gas products. Ind Eng Chem Res. ACS Publications 36(11):4436–4444

    Article  CAS  Google Scholar 

  33. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859

    Article  CAS  Google Scholar 

  34. Memon MA, Bai W, Sun J, Imran M, Phulpoto SN, Yan S, Huang Y, Geng J (2016) Conjunction of conducting polymer nanostructures with macroporous structured graphene thin films for high-performance flexible supercapacitors. ACS Appl Mater Interfaces 8(18):11711–11719

    Article  CAS  Google Scholar 

  35. Mhamane D et al (2011) From graphite oxide to highly water dispersible functionalized graphene by single step plant extract-induced deoxygenation. Green Chem R Soc Chem 13(8):1990–1996

    Article  CAS  Google Scholar 

  36. Mishra N et al (2012) Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. J Anal Appl Pyrolysis. Elsevier 94:91–98

    Article  CAS  Google Scholar 

  37. Miskolczi N et al (2009) Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Process Technol Elsevier 90(7–8):1032–1040

    Article  CAS  Google Scholar 

  38. Mohamed HH (2018) Sonochemical synthesis of ZnO hollow microstructure/reduced graphene oxide for enhanced sunlight photocatalytic degradation of organic pollutants. J Photochem Photobiol A Chem 353:401–408

    Article  CAS  Google Scholar 

  39. Mohamed HH, Alsanea A (2018) TiO2/carbon dots decorated reduced graphene oxide composites from waste car bumper and TiO2 nanoparticles for photocatalytic applications. Arab J Chem, In press. https://doi.org/10.1016/j.arabjc.2018.08.016

  40. Mohamed HH, Mohamed SK (2018) Rutile TiO2 nanorods/MWCNT composites for enhanced simultaneous photocatalytic oxidation of organic dyes and reduction of metal ions. Mater Res Express 5:015057

    Article  CAS  Google Scholar 

  41. Mohamed et al (2018) Multifunctional TiO2 microspheres-rGO as highly active visible light photocatalyst and antimicrobial agent. Mater Express 8(4):345–352

    Article  CAS  Google Scholar 

  42. Morf LS et al (2013) Precious metals and rare earth elements in municipal solid waste--sources and fate in a Swiss incineration plant. Waste Manag Elsevier 33(3):634–644

    Article  CAS  Google Scholar 

  43. Murthy NS, Correale ST, Minor H (1991) Structure of the amorphous phase in crystallizable polymers: poly (ethylene terephthalate). Macromolecules ACS Publications 24(5):1185–1189

    Article  CAS  Google Scholar 

  44. Muthirulan PM et al (2013) Beneficial role of ZnO photocatalyst supported with porous activated carbon for the mineralization of alizarin cyanin green dye in aqueous solution. J Adv Res 6:479–484

    Article  Google Scholar 

  45. Nasir S, Hussein M, Zainal Z, Yusof N (2018) Carbon-based nanomaterials/allotropes: a glimpse of their synthesis, properties and some applications. Materials 11:295. https://doi.org/10.3390/ma11020295

    Article  CAS  Google Scholar 

  46. Paquin R, Limage M-H, Colomban P (2007) Micro-Raman study of PET single fibres under high hydrostatic pressure: phase/conformation transition and amorphization. J Raman Spectrosc Wiley Online Library 38(9):1097–1105

    Article  CAS  Google Scholar 

  47. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep Elsevier 43(3):61–102

    Article  CAS  Google Scholar 

  48. Richter H et al (1997) Generation of higher fullerenes in flames. J Phys Chem B ACS Publications 101(9):1556–1560

    Article  CAS  Google Scholar 

  49. Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5(9):7601–7607

    Article  CAS  Google Scholar 

  50. Samperi F, Puglisi C, Alicata R, Montaudo G (2004) Thermal degradation of poly(butylene terephthalate) at the processing temperature. Polym Degrad Stab 83:11–17

    Article  CAS  Google Scholar 

  51. Schmucker SC (1893) The electrolytic separation of the metals of the second group. J Am Chem Soc ACS Publications 15(4):195–206

    Article  Google Scholar 

  52. Sharma BK et al (2014) Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Process Technol Elsevier 122:79–90

    Article  CAS  Google Scholar 

  53. Shinde VV et al (2014) Surfactant free microwave assisted synthesis of ZnO microspheres: study of their antibacterial activity. Appl Surf Sci Elsevier 307:495–502

    Article  CAS  Google Scholar 

  54. Singh et al (2016) Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv 6:64993–65011

    Article  CAS  Google Scholar 

  55. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons

  56. Tang T et al (2005) Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angewandte Chemie International Edition Wiley Online Library 44(10):1517–1520

    Article  CAS  Google Scholar 

  57. To JWF et al (2015) Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework. ACS Cent Sci 1:68–76

    Article  CAS  Google Scholar 

  58. Vander Hoogerstraete T, Onghena B, Binnemans K (2013) Homogeneous liquid--liquid extraction of metal ions with a functionalized ionic liquid. J Phys Chem Lett. ACS Publications 4(10):1659–1663

    Article  CAS  Google Scholar 

  59. Xu J, Wang Y, Hu S (2017) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim Acta 184:1–44

    Article  CAS  Google Scholar 

  60. Yang M-H, Lin Y-H (2009) Catalytic conversion of postconsumer PE/PP waste into hydrocarbons using the FCC process with an equilibrium FCC commercial catalyst. J Appl Polym Sci Wiley Online Library 114(1):193–203

    Article  CAS  Google Scholar 

  61. Yatskiv R, Grym J (2018) Influence of the interaction between graphite and polar surfaces of ZnO on the formation of Schottky contact. J Electron Mater 47:5002–5006

    Article  CAS  Google Scholar 

  62. Zhang L, Cheng H, Zong R, Zhu Y (2009) Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity. J Phys Chem C 113(6):2368–2374

    Article  CAS  Google Scholar 

  63. Zhao YL et al (2017) ZnO Nanomembrane/expanded graphite composite synthesized by atomic layer deposition as binder-free anode for Lithium ion batteries. ACS Appl Mater Interfaces 9:38522–38529

    Article  CAS  Google Scholar 

  64. Zhou Y, Qiu K (2010) A new technology for recycling materials from waste printed circuit boards. J Hazard Mater Elsevier 175(1–3):823–828

    Article  CAS  Google Scholar 

  65. Zhou H, Liu Q, Liu W, Ge J, Lan M, Wang C, Geng J, Wang P (2014) Template-free preparation of Volvox-like CdxZn1−xS Nanospheres with cubic phase for efficient photocatalytic hydrogen production. Chem-Asian J 9:811–818

    Article  CAS  Google Scholar 

  66. Zhuo C, Levendis YA (2014) Upcycling waste plastics into carbon nanomaterials: a review. J Appl Polym Sci Wiley Online Library 131(4)

Download references

Acknowledgements

The authors gratefully acknowledge the research units at College of Science and Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University.

Funding

This work is financially supported by the Deanship of Scientific Research of Imam Abdulrahman Bin Faisal University, Saudi Arabia (Grant Nos. 2016-074-Sci).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hanan H. Mohamed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Suresh Pillai

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohamed, H.H., Alsanea, A.A., Alomair, N.A. et al. ZnO@ porous graphite nanocomposite from waste for superior photocatalytic activity. Environ Sci Pollut Res 26, 12288–12301 (2019). https://doi.org/10.1007/s11356-019-04684-3

Download citation

Keywords

  • PET/Zn mixed waste
  • Simultaneous upcycling
  • ZnO/graphite nanocomposite
  • Photocatalysis