Modulating effect of tiron on the capability of mitochondrial oxidative phosphorylation in the brain of rats exposed to radiation or manganese toxicity

Abstract

The brain is an important organ rich in mitochondria and more susceptible to oxidative stress. Tiron (sodium 4,5-dihydroxybenzene-1,3-disulfonate) is a potent antioxidant. This study aims to evaluate the effect of tiron on the impairment of brain mitochondria induced by exposure to radiation or manganese (Mn) toxicity. We assessed the capability of oxidative phosphorylation (OXPHOS) through determination of mitochondrial redox state, the activity of electron transport chain (ETC), and Krebs cycle as well as the level of adenosine triphosphate (ATP) production. Rats were exposed to 7 Gy of γ-rays or injected i.p. with manganese chloride (100 mg/kg), then treated with tiron (471 mg/kg) for 7 days. The results showed that tiron treatment revealed positive modulation on the mitochondrial redox state manifested by a marked decrease of hydrogen peroxide (H2O2), malondialdehyde (MDA), and total nitrate/nitrite (NOx) associated with a significant increase in total antioxidant capacity (TAC), glutathione (GSH) content, manganese superoxide dismutase (MnSOD), and glutathione peroxidase (GPx) activities. Moreover, tiron can increase the activity of ETC through preventing the depletion in the activity of mitochondrial complexes (I, II, III, and IV), an elevation of coenzyme Q10 (CoQ10) and cytochrome c (Cyt-c) levels. Additionally, tiron showed a noticeable increase in mitochondrial aconitase (mt-aconitase) activity as the major component of Krebs cycle to maintain a high level of ATP production. Tiron also can restore mitochondrial metal homeostasis through positive changes in the levels of calcium (Ca), iron (Fe), Mn, and copper (Cu). It can be concluded that tiron may be used as a good mitigating agent to attenuate the harmful effects on the brain through the inhibition of mitochondrial injury post-exposure to radiation or Mn toxicity.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aaseth J, Skaug MA, Cao Y, Andersen O (2015) Chelation in metal intoxication principles and paradigms. J Trace Elem Med Biol 31:260–266

    Article  CAS  Google Scholar 

  2. Apostolova N, Victor VM (2015) Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid Redox Signal 22:686–729

    Article  CAS  Google Scholar 

  3. Ateyya H, HM Wagih HM, El-Sherbeeny NA (2016) Effect of tiron on remote organ injury in rats with severe acute pancreatitis induced by L-arginine. Naunyn Schmiedeberg’s Arch Pharmacol 389:873–885

    Article  CAS  Google Scholar 

  4. Barjaktarovic Z, Schmaltz D, Shyla A, Azimzadeh O, Schulz S, Haagen J, Dörr W, Sarioglu H, Schäfer A, Atkinson MJ, Zischka H, Tapio S (2011) Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS One 6:e27811

    Article  CAS  Google Scholar 

  5. Basinger MA, Jones MM (1981) Tiron (sodium 4,5-dihydroxybenzene-1,3-disulfonate) as an antidote for acute uranium intoxication in mice. Res Commun Chem Pathol Pharmacol 34:351–358

    CAS  Google Scholar 

  6. Beutler E, Duron O, Kelly BM (1963) Improved method for determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  Google Scholar 

  7. Borrego-Soto G, Ortiz-López R, Rojas-Martínez A (2015) Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet Mol Biol 38:420–432

    Article  CAS  Google Scholar 

  8. Brown GC (1999) Nitric oxide and mitochondrial respiration. Biochim Biophys Acta 141:351–369

    Article  Google Scholar 

  9. Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504:46–57

    Article  CAS  Google Scholar 

  10. Brown GC, Borutaite V (2004) Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658:44–49

    Article  CAS  Google Scholar 

  11. Cassina A, Radi R (1996) Different inhibitory actions of NO and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316

    Article  CAS  Google Scholar 

  12. Christianson DW (1997) Review structural chemistry and biology of manganese metalloenzymes. Prog Biophys Mol Biol 67:217–252

    Article  CAS  Google Scholar 

  13. Chtourou Y, Garoui EM, Boudawara T, Zeghal N (2013) Therapeutic efficacy of silymarin from milk thistle in reducing manganese-induced hepatic damage and apoptosis in rats. Human and Exper Toxicol 32:70–81

    Article  CAS  Google Scholar 

  14. Du H, Yan SS (2010) Mitochondrial medicine for neurodegenerative diseases. Int J Biochem Cell Biol 42:560–572

    Article  CAS  Google Scholar 

  15. El-Tahawy NA (2009) Curcumin attenuates gamma radiation induced intestinal damage in rats. Egypt J Rad Sci Applic 22:461–475

    Google Scholar 

  16. Fang Y, Hu XH, Jia ZG, Xu MH, Guo ZY, Gao FH (2012) Tiron protects against UVB-induced senescence-like characteristics in human dermal fibroblasts by the inhibition of superoxide anion production and glutathione depletion. Australas J Dermatol 53:172–180

    Article  Google Scholar 

  17. Fernandes J, Hao L, Bijli KM, Chandler JD, Orr M, Hu XY, Jones DP, Go YM (2017) Manganese stimulates mitochondrial H2O2 production in SH-SY5Y human neuroblastoma cells over physiologic as well as toxicologic range. Toxicol Sci 155:213–223

    Article  CAS  Google Scholar 

  18. Fernández-Checa JC, N. Kaplowitz N, García-Ruiz C, Colell A (1998) Mitochondrial glutathione: importance and transport. Semin Liver Dis 18:389–401

  19. Fernsebner K, Zorn J, Kanawati B, Walker A, Michalke B (2014) Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(II)/(III) in rat brain tissue. Metallomics 6:921–931

    Article  CAS  Google Scholar 

  20. Filosto M, Scarpelli M, Cotelli MS, Vielmi V, Todeschini A, Gregorelli V, Tonin P, Tomelleri G, Padovani A (2011) The role of mitochondria in neurodegenerative diseases. J Neurol 258:1763–1774

    Article  CAS  Google Scholar 

  21. Gomez M, Domingo JL, Llobet JM, Corbella J (1991) Evaluation of the efficacy of various chelating agents on urinary excretion and tissue distribution of vanadium in rats. Toxicol Lett 57:227–234

    Article  CAS  Google Scholar 

  22. Han D, Canali R, Garcia J, Aguilera R, Gallaher TK, Cadenas E (2005) Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione. Biochemistry 44:11986–11996

    Article  CAS  Google Scholar 

  23. Han D, Cannali R, Rettorl DN, kaplowitz N (2003) Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Mol Pharmacol 64:1136–1144

    Article  CAS  Google Scholar 

  24. Hargreaves I (2014) Coenzyme Q10 as a therapy for mitochondrial disease. Int J Biochem Cell Biol 49:105–111

    Article  CAS  Google Scholar 

  25. Herscher LL, Krishna MC, Cook JA, Coleman CN, Biaglow JE, Tuttle SW, Gonzalez FJ, Mitchell JB (1994) Protection against SR4233 (tirapazamine) aerobic cytotoxicity by the metal chelators desferrioxamine and tiron. Int J Radiat Oncol Biol Phys 30:879–885

    Article  CAS  Google Scholar 

  26. Iglesias DE, Bombicino SS, Valdez LB, Boveris A (2015) Nitric oxide interacts with mitochondrial complex III producing antimycin-like effects. Free Radic Biol Med 89:602–613

    Article  CAS  Google Scholar 

  27. Ignarro LJ, Napoli C, Loscalzo J (2002) Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: an overview. Circ Res 90:21–28

    Article  CAS  Google Scholar 

  28. Indravathi G, Kiran Kumari K, Devi BC (2014) Manganese induced hematological alterations in albino rats: reversal effect of alpha-tocopherol. Int J Innov Res Sci Eng Technol 3:14988–14999

    Google Scholar 

  29. Islam MT (2017) Radiation interactions with biological systems. Int J Rad Biol 93:487–493

    Article  CAS  Google Scholar 

  30. Jin H, Kanthasamy A, Ghosh A, Anantharama V, Kalyanaraman B, Kanthasamy AG (2014) Mitochondria-targeted antioxidants for treatment of Parkinson’s disease. Preclinical and clinical outcomes. Biochim Biophys Acta 1842:1282–1294

    Article  CAS  Google Scholar 

  31. Kam WW, Banati RB (2013) Effects of ionizing radiation on mitochondria. Free Radic Biol Med 2013(65):607–619

  32. Kennedy MC, Emptage MH, Dreyer JL, Beinert H (1983) The role of iron in the activation–inactivation of aconitase. J Biol Chem 258:11098–11105

    CAS  Google Scholar 

  33. Kwakye GF, Paoliello MM, Mukhopadhyay S, Bowman A, Aschner M (2015) Manganese-induced parkinsonism and Parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health 12:7519–7540

    Article  CAS  Google Scholar 

  34. Layne E (1975) Spectrophotometric and turbidimetric methods for measuring proteins. Methods Enzymol 3:447–455

    Article  Google Scholar 

  35. Lu J, Guo JH, Tu XL, Zhang C, Zhao M, Zhang QW, Gao FH (2016) Tiron inhibits UVB-induced AP-1 binding sites transcriptional activation on MMP-1 and MMP-3 promoters by MAPK signaling pathway in human dermal fibroblasts. PLoS One 11:e0159998

    Article  CAS  Google Scholar 

  36. Malecki EA (2001) Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Res Bulletin 55:225–228

    Article  CAS  Google Scholar 

  37. Malthankar GV, White BK, Bhushan A, Daniels CK, Rodnick KJ, James CK, Lai1 JCK (2004) Differential lowering by manganese treatment of activities of glycolytic and tricarboxylic acid (TCA) cycle enzymes investigated in neuroblastoma and astrocytoma cells is associated with manganese-induced cell death. Neurochem Res 29:709–717

  38. McArdle F, Pattwell DM, Vasilaki A, McArdle A, Jackson MJ (2005) Intracellular generation of reactive oxygen species by contracting skeletal muscle cells. Free Radic Biol Med 39:651–657

    Article  CAS  Google Scholar 

  39. Miranda KM, Espey MG, Wink DA (2001) A rapid simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  Google Scholar 

  40. Morgan A, Ibrahim MA, Galal MK, Ogaly HA, Abd-Elsalam RM (2018) Innovative perception on using tiron to modulate the hepatotoxicity induced by titanium dioxide nanoparticles in male rats. Biomed Pharmacother 103:553–561

    Article  CAS  Google Scholar 

  41. Nirala SK, Bhadauria M, Upadhyay AK, Mathur R, Mathur A (2009) Reversal of effects of intraperitoneally administered beryllium nitrate by tiron and CaNa3DTPA alone or in combination with alpha-tocopherol. Indian J Exp Biol 47:955–963

    CAS  Google Scholar 

  42. Nirala SK, Bhadauria M, Mathur R, Mathur A (2008) Influence of alpha-tocopherol, propolis and piperine on therapeutic potential of tiferron against beryllium induced toxic manifestations. J Appl Toxicol 28:44–54

    Article  CAS  Google Scholar 

  43. Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Communicat 46:849–854

    Article  CAS  Google Scholar 

  44. Oyewole AO, Wilmot MC, Fowler M, Birch-Machin MA (2014) Comparing the effects of mitochondrial targeted and localized antioxidants with cellular antioxidants in human skin cells exposed to UVA and hydrogen peroxide. FASEB J 28:485–494

    Article  CAS  Google Scholar 

  45. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Laborat Clin Med 70:158–169

    CAS  Google Scholar 

  46. Peres TV, Schettinger MR, Chen P, Carvalho F, Avila DS, Bowman AB, Aschner M (2016) Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol 17(57)

  47. Peskin AV, Labas YA, Tikhonov AN (1998) Superoxide radical production by sponges Sycon sp. FEBS Lett 434:201–204

    Article  CAS  Google Scholar 

  48. Rines AK, Ardehali H (2013) Transition metals and mitochondrial metabolism in the heart. J Mol Cell Cardiol 55:50–57

    Article  CAS  Google Scholar 

  49. Sarti PA, Giuffre MC, Barone E, Forte D, Mastronicola D, Brunori M (2003) Nitric oxide and cytochrome oxidase: reaction mechanisms from the enzyme to the cell. Free Radic Biol Med 34:509–520

    Article  CAS  Google Scholar 

  50. Senior AE (1988) ATP synthesis by oxidative phosphorylation. Physiol Rev 68:177–231

    Article  CAS  Google Scholar 

  51. Sharma P, Ahmad Shah Z, Kumar A, Islam F, Mishra KP (2007) Role of combined administration of tiron and glutathione against aluminum-induced oxidative stress in rat brain. J Trace Elem Med Biol 21:63–70

    Article  CAS  Google Scholar 

  52. Sharma P, Johri S, Shukla S (2000) Beryllium-induced toxicity and its prevention by treatment with chelating agents. J Appl Toxicol 20:313–318

    Article  CAS  Google Scholar 

  53. Silveira LR, Pereira-Da-Silva L, Juel C, Hellsten Y (2003) Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions. Free Radic Biol Med 35:455–464

    Article  CAS  Google Scholar 

  54. Son EW, Lee SRHS, Choi HS, Koo HJ, Huh JE, Kim MH, Pyo S (2007) Effects of supplementation with higher levels of manganese and magnesium on immune function. Arch Pharm Res 30:749

    Google Scholar 

  55. Spitz DR, Azzam EI, Li JJ, Gius D (2004) Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev 23:311–322

    Article  CAS  Google Scholar 

  56. Stiburek L, Vesela K, Hansikova H, Hulkova H, Zeman J (2009) Loss of function of Sco1 and its interaction with cytochrome c oxidase. Am J Physiol Cell Physiol 296:C1218–C1226

    Article  CAS  Google Scholar 

  57. Storrie B, Madden EA (1990) Isolation of subcellular organelles. Methods Enzymol 182:203–225

    Article  CAS  Google Scholar 

  58. Supinski G, Nethery D, Stofan D, DiMarco A (1999) Extracellular calcium modulates generation of reactive oxygen species by the contracting diaphragm. J Appl Physiol 87:2177–2185

    Article  CAS  Google Scholar 

  59. Taiwo FA (2008) Mechanism of tiron as scavenger of superoxide ions and free electrons. Spectroscopy 22:491–498

    Article  CAS  Google Scholar 

  60. Tong WH, Rouault T (2007) A metabolic regulation of citrate and iron by aconitases: role of iron–sulfur cluster biogenesis. Biometals 20:549–564

    Article  CAS  Google Scholar 

  61. Wang C, Qi S, Liu C, Yang A, Fu W, Quan C, Duan P, Yu T, Yang K (2017) Mitochondrial dysfunction and Ca2+ overload in injured Sertoli cells exposed to bisphenol A. Environ Toxicol 32:823–831

    Article  CAS  Google Scholar 

  62. Yoshida T, Goto SM, Kawakatsu MY, Urata YTS, Li TS (2012) Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic Res 46:147–153

    Article  CAS  Google Scholar 

  63. Yoshioka T, Kawada K, Shimada T, Mori M (1979) Lipid peroxidation in maternal and cord blood and protective mechanisms against activated oxygen toxicity in the blood. Am J Obstet Gynecol 135:372–376

    Article  CAS  Google Scholar 

  64. Yousefi BV, Sadeghi L, Shirani K, Malekirad AA, Rezaei M (2014) The toxic effect of manganese on the acetylcholinesterase activity in rat brains. J Toxicol 2014:1–4

  65. Zhang S, Fu J, Z Zhou Z (2004) In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicol in Vitro 18:71–77

    Article  CAS  Google Scholar 

  66. Zhang S, Zhou Z, Fu J (2003) Effect of manganese chloride exposure on liver and brain mitochondria function in rats. Environ Res 93:149–157

    Article  CAS  Google Scholar 

  67. Zheng W, Jiang YM, Zhang Y, JiangW WX, Cowan DM (2009) Chelation therapy of manganese intoxication with para-aminosalicylic acid (PAS) in Sprague-Dawley rats. Neurotoxicology 30:240–248

    Article  CAS  Google Scholar 

  68. Zheng W, Ren S, Graziano JH (1998) Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity. Brain Res 799:334–342

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nadia Abdel-Magied.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdel-Magied, N., Abdel-Aziz, N., Shedid, S.M. et al. Modulating effect of tiron on the capability of mitochondrial oxidative phosphorylation in the brain of rats exposed to radiation or manganese toxicity. Environ Sci Pollut Res 26, 12550–12562 (2019). https://doi.org/10.1007/s11356-019-04594-4

Download citation

Keywords

  • MnCl2
  • γ-Radiation
  • Brain
  • Mitochondria
  • Tiron
  • ATP