Long-term observation of cyanobacteria blooms using multi-source satellite images: a case study on a cloudy and rainy lake

Abstract

High-frequency and reliable data on cyanobacteria blooming over a long time period is crucial to identify the outbreak mechanism of blooms and to forecast future trends. However, in cloudy and rainy areas, it is difficult to retrieve useful satellite images, especially in the rainy season. To address this problem, we used data from the HJ-1/CCD (Chinese environment and disaster monitoring and forecasting satellite/charge coupled device), GF-1/WFV (Chinese high-resolution satellite/wide field of view), and Landsat-8/OLI (Operational Land Imager) satellites to generate a time series of the bloom area from 2009 to 2016 in Dianchi Lake, China. We then correlated the responses of bloom dynamics to meteorological factors. Several findings can be drawn: (1) a higher bloom frequency and a larger bloom area occurred in 2011, 2013, and 2016, compared to the other years; (2) the frequency of blooms peaked in April, August, and November each year and expanded from north to south starting in July; (3) air temperature in spring and sunshine hours in summer greatly correlated to the yearly bloom area; (4) wind speed and sunshine hours strongly affected the short-term expansion of blooms and thereafter influenced the monthly bloom scale; and (5) rainfall had a strong short-term influence on the occurrence of blooms. Cyanobacteria blooms often occurred when wind speeds were less than 2.35 ± 0.78 m/s in the dry season and 2.01 ± 0.75 m/s in the rainy season, when there were 48 to 72 h of sunshine in the dry season and 35 to 57 h of sunshine in the rainy season, and when there was more than 10 mm of daily precipitation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Allinger LE, Reavie ED (2013) The ecological history of Lake Erie as recorded by the phytoplankton community. J Great Lakes Res 39:365–382

    Article  CAS  Google Scholar 

  2. Bertani I, Obenour DR, Steger CE, Stow CA, Gronewold AD, Scavia D (2016) Probabilistically assessing the role of nutrient loading in harmful algal bloom formation in western Lake Erie. J Great Lakes Res 42:1184–1192

    Article  CAS  Google Scholar 

  3. Brand LE, Compton A (2007) Long-term increase in Karenia brevis abundance along the Southwest Florida coast. Harmful Algae 6:232–252

    Article  Google Scholar 

  4. Cao H, Kong F, Luo L, Shi X, Yang Z, Zhang X, Tao Y (2006) Effects of wind and wind-induced waves on vertical phytoplankton distribution and surface blooms of Microcystis aeruginosa in Lake Taihu. J Freshw Ecol 21:231–238

    Article  Google Scholar 

  5. Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46:1394–1407

    Article  CAS  Google Scholar 

  6. Carmichael WW (2001) Health effects of toxin-producing cyanobacteria: “the CyanoHAB”. Hum Ecol Risk Assess 7:1393–1407

  7. Cloern JE, Schraga TS, Lopez CB, Knowles N, Grover Labiosa R, Dugdale R (2005) Climate anomalies generate an exceptional dinoflagellate bloom in San Francisco Bay. Geophys Res Lett 32

  8. Cronberg, Gertrud, Claes (1981) Cyanodictyon imperfectum, a new chroococcal blue-green alga from Lake Trummen, Sweden 101–110

  9. Cui T-W, Zhang J, Sun L-E, Jia Y-J, Zhao W, Wang Z-L, Meng J-M (2012) Satellite monitoring of massive green macroalgae bloom (GMB): imaging ability comparison of multi-source data and drifting velocity estimation. Int J Remote Sens 33:5513–5527

    Article  Google Scholar 

  10. Davis CO, Kavanaugh M, Letelier R, Bissett WP, Kohler D (2007) Spatial and spectral resolution considerations for imaging coastal waters. Proc SPIE 6680

  11. Francis G (1878) Poisonous Australian lake. Nature 18:11–12

    Article  Google Scholar 

  12. Gao L, Zhou J-M, Yang H, Chen J (2005) Phosphorus fractions in sediment profiles and their potential contributions to eutrophication in Dianchi Lake. Environ Geol 48:835–844

    Article  CAS  Google Scholar 

  13. Gerla DJ, Mooij WM, Huisman J (2011) Photoinhibition and the assembly of light-limited phytoplankton communities. Oikos 120:359–368

    Article  Google Scholar 

  14. Guo W-H, Yu M, Liu Q-X, Wu J, Li X-G (2015) Vernalization process and the relationship between inductive low temperature in Microcystis aeruginosa in Dianchi Lake. Ecol Environ Sci 24(12):2022–2026 (in Chinese)

  15. Guo W-H, Liu Q-X, Peng X-W, Liu C-X (2016) Principle of vernalization in Microcystis aeruginosa in Dianchi Lake and improvement of gene model on controlling the vernalization. Ecol Environ Sci 25(12):2028–2034 (in Chinese)

  16. Heisler J, Glibert P, Burkholder J, Anderson D, Cochlan W, Dennison W, Gobler C, Dortch Q, Heil C, Humphries E (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13

    Article  CAS  Google Scholar 

  17. Higgins SN, Pennuto CM, Howell ET, Lewis TW, Makarewicz JC (2012) Urban influences on Cladophora blooms in Lake Ontario. J Great Lakes Res 38:116–123

    Article  CAS  Google Scholar 

  18. Ho JC, Stumpf RP, Bridgeman TB, Michalak AM (2017) Using Landsat to extend the historical record of lacustrine phytoplankton blooms: a Lake Erie case study. Remote Sens Environ 191:273–285

    Article  Google Scholar 

  19. Hu C, Lee Z, Ma R, Yu K, Li D, Shang S (2010) Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China J Geophys Res 115

  20. Huang C, Wang X, Yang H, Li Y, Wang Y, Chen X, Xu L (2014) Satellite data regarding the eutrophication response to human activities in the plateau lake Dianchi in China from 1974 to 2009. Sci Total Environ 485-486:1–11

    Article  CAS  Google Scholar 

  21. Huang C, Shi K, Yang H, Li Y, Zhu A, Sun D, Xu L, Zou J, Chen X (2015) Satellite observation of hourly dynamic characteristics of algae with Geostationary Ocean Color Imager (GOCI) data in Lake Taihu. Remote Sens Environ 159:278–287

    Article  Google Scholar 

  22. Huang C, Zhang L, Li Y, Lin C, Huang T, Zhang M, A-x Z, Yang H, Wang X (2018) Carbon and nitrogen burial in a plateau lake during eutrophication and phytoplankton blooms. Sci Total Environ 616:296–304

    Article  CAS  Google Scholar 

  23. Huisman J, Sommeijer B (2002) Population dynamics of sinking phytoplankton in light-limited environments: simulation techniques and critical parameters. J Sea Res 48:83–96

    Article  Google Scholar 

  24. JÖHnk KD, Huisman JEF, Sharples J, Sommeijer BEN, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Chang Biol 14:495–512

    Article  Google Scholar 

  25. Kahru M, Leppanen JM, Rud O (1993) Cyanobacterial blooms cause heating of the sea surface. Mar Ecol Prog Ser 101:1–7

  26. Kanoshina I, Lips U, Leppänen J-M (2003) The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae 2:29–41

    Article  Google Scholar 

  27. Kutser T (2004) Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol Oceanogr 49:2179–2189

    Article  Google Scholar 

  28. Kutser T (2009) Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters. Int J Remote Sens 30:4401–4425

    Article  Google Scholar 

  29. Li M, Xie G, Lu W, Dai C (2011) Effect of meteorological conditions on blue algal bloom distribution in Dianchi Lake. J Meteorol Sci 31:639–645 (in Chinese)

  30. Li J, Chen X, Tian L, Huang J, Feng L (2015) Improved capabilities of the Chinese high-resolution remote sensing satellite GF-1 for monitoring suspended particulate matter (SPM) in inland waters: radiometric and spatial considerations. ISPRS J Photogramm Remote Sens 106:145–156

    Article  Google Scholar 

  31. Lu W-K, Yu L, Ou X, Li F (2017) Relationship between occurrence frequency of cyanobacteria bloom and meteorological factors in Lake Dianchi. J Lake Sci 29:534–545 (in Chinese)

  32. Ma X, Wang Y, Feng S, Wang S (2015) Vertical migration patterns of different phytoplankton species during a summer bloom in Dianchi Lake, China. Environ Earth Sci 74:3805–3814

  33. Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    Article  CAS  Google Scholar 

  34. Pan J, Wenchao amp LI, Chen K (2006) A study on the environmental effect in the zone of restoration of aquatic plants at the northeastern Dianchi Lake: II. The effect on removing the pollutants. J Lake Sci 18:578–584 (in Chinese)

  35. Qin B, Xu P, Wu Q, Luo L, Zhang Y (2007) Environmental issues of Lake Taihu, China. Hydrobiologia 581:3–14

  36. Reichwaldt ES, Ghadouani A (2012) Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics. Water Res 46:1372–1393

    Article  CAS  Google Scholar 

  37. Reynolds CS (2006): Ecology of phytoplankton. Cambridge University Press

  38. Shaw G, Garnett C, Moore MR, Florian P (2001) The predicted impact of climate change on toxic algal (cyanobacterial) blooms and toxin production in Queensland. Environ Health 1:76

    Google Scholar 

  39. Sheng H, Liu H, Wang C, Guo H, Liu Y, Yang Y (2012) Analysis of cyanobacteria bloom in the Waihai part of Dianchi Lake, China. Ecol Inf 10:37–48

  40. Shi K, Li Y, Li L, Lu H (2013) Absorption characteristics of optically complex inland waters: implications for water optical classification. J Geophys Res Biogeo 118:860–874

  41. Shi K, Zhang Y, Li Y, Li L, Lv H, Liu X (2015a) Remote estimation of cyanobacteria-dominance in inland waters. Water Res 68:217–226

    Article  CAS  Google Scholar 

  42. Shi K, Zhang Y, Zhu G, Liu X, Zhou Y, Xu H, Qin B, Liu G, Li Y (2015b) Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data. Remote Sens Environ 164:43–56

    Article  Google Scholar 

  43. Shi K, Zhang Y, Zhou Y, Liu X, Zhu G, Qin B, Gao G (2017) Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: responses to nutrient enrichment and meteorological factors. Sci Rep 7:40326

    Article  CAS  Google Scholar 

  44. Shi K, Zhang Y, Zhu G, Qin B, Pan D (2018) Deteriorating water clarity in shallow waters: evidence from long term MODIS and in-situ observations. Int J Appl Earth Obs Geoinf 68:287–297

    Article  Google Scholar 

  45. Stumpf RP, Wynne TT, Baker DB, Fahnenstiel GL (2012) Interannual variability of cyanobacterial blooms in Lake Erie. PLoS One 7:e42444

    Article  CAS  Google Scholar 

  46. Stumpf RP, Johnson LT, Wynne TT, Baker DB (2016) Forecasting annual cyanobacterial bloom biomass to inform management decisions in Lake Erie. J Great Lakes Res 42:1174–1183

    Article  CAS  Google Scholar 

  47. Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94

    CAS  Google Scholar 

  48. Wu T, Qin B, Brookes JD, Shi K, Zhu G, Zhu M, Yan W, Wang Z (2015) The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China. Sci Total Environ 518-519:24–30

    Article  CAS  Google Scholar 

  49. Wu Y, Huang T, Huang C, Shen Y, Luo Y, Yang H, Yu Y, Li R, Gao Y, Zhang M (2018) Internal loads and bioavailability of phosphorus and nitrogen in Dianchi Lake, China. Chin Geogr Sci 28:851–862

    Article  Google Scholar 

  50. Xie G, Li M, Lu W (2010) Spectral features, remote sensing identification and breaking-out meteorological conditions of algal bloom in Lake Dianchi. J Lake Sci 22:327–336 (in Chinese)

  51. Xing Q, Hu C (2016) Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: application of a virtual baseline reflectance height technique. Remote Sens Environ 178:113–126

    Article  Google Scholar 

  52. Yang Z, Zhang M, Shi X, Kong F, Ma R, Yu Y (2016) Nutrient reduction magnifies the impact of extreme weather on cyanobacterial bloom formation in large shallow Lake Taihu (China). Water Res 103:302–310

    Article  CAS  Google Scholar 

  53. Zhang M, Duan H, Shi X, Yu Y, Kong F (2012) Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change. Water Res 46:442–452

    Article  CAS  Google Scholar 

  54. Zhang Y, Shi K, Liu J, Deng J, Qin B, Zhu G, Zhou Y (2016) Meteorological and hydrological conditions driving the formation and disappearance of black blooms, an ecological disaster phenomena of eutrophication and algal blooms. Sci Total Environ 569-570:1517–1529

    Article  CAS  Google Scholar 

  55. Zheng Z, Li Y, Guo Y, Xu Y, Liu G, Du C (2015) Landsat-based long-term monitoring of total suspended matter concentration pattern change in the wet season for Dongting Lake, China. Remote Sens 7:13975–13999

    Article  Google Scholar 

  56. Zhou M-J, Zhu M-Y (2006) Progress of the project “Ecology and Oceanography of Harmful Algal Blooms in China”. Advances in Earth Sci 21:673–679

  57. Zhou Q, Zhang Y, Lin D, Shan K, Luo Y, Zhao L, Tan Z, Song L (2016) The relationships of meteorological factors and nutrient levels with phytoplankton biomass in a shallow eutrophic lake dominated by cyanobacteria, Lake Dianchi from 1991 to 2013. Environ Sci Pollut Res Int 23:15616–15626

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Key R&D Program of China (Grant No. 2017YFB0503902), the National Natural Science Foundation of China (Grant Nos. 41671340, 41701412, and 41701423), the Major Science and Technology Program for Water Pollution Control and Treatment (Grant No. 2017ZX07302-003), and the Natural Science Foundation of Jiangxi Province (Grant No. 20171BAB213024).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yunmei Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Vitor Manuel Oliveira Vasconcelos

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mu, M., Wu, C., Li, Y. et al. Long-term observation of cyanobacteria blooms using multi-source satellite images: a case study on a cloudy and rainy lake. Environ Sci Pollut Res 26, 11012–11028 (2019). https://doi.org/10.1007/s11356-019-04522-6

Download citation

Keywords

  • Dianchi Lake
  • Cyanobacteria bloom
  • Multi-source remote sensing image
  • Meteorological factors
  • Multi-timescales