Skip to main content
Log in

Acute effects of UVB radiation on the survival, growth, development, and reproduction of Daphniopsis tibetana Sars (Crustacea: Cladocera)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Daphniopsis tibetana Sars lives in elevation, usually with strong solar UV radiation. We speculate that UV may have an effect on the ecology and evolutionary biology of this species. However, the regulatory effect and mechanism of UV on D. tibetana have not been studied previously. Here, our results showed that UVB could act as a positive factor in the relative body lengths, reproductive parameters, and population growth parameters of D. tibetana when UVB radiation is 20–170 mJ cm−2, compared with the control group. Strikingly, these parameters were highest at 120 mJ cm−2. To explore the mechanism underlying the UVB irradiation effects, we conducted a transcriptome analysis using the Trinity platform. The results indicated that differentially regulated genes were mostly enriched in lipid transport and lipid localization by Gene Ontology (GO) enrichment analysis of 146 differentially expressed genes (83 upregulated and 63 downregulated). This is the first study of UVB radiation of D. tibetana to reveal genes that may have crucial roles in survival, growth, and reproduction and could be candidates for future functional studies. Additionally, the study could supply a substantial resource for investigating and elucidating lipids that could play important roles in a physiological context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

We declare that the data supporting the findings of this study are available within the article.

References

  • Abdi H (2007) Bonferroni and Šidák corrections for multiple comparisons. Encyclopedia of Measurement and Statistics 3:103–107

    Google Scholar 

  • Arts M, Rai H (1997) Effects of enhanced ultraviolet-B radiation on the production of lipid, polysaccharide and protein in three freshwater algal species. Freshwater Biol 38:597–610

    Article  CAS  Google Scholar 

  • Berrendero F, Garcia-Gil L, Hernandez ML, Romero J, Cebeira M, de Miguel R et al (1998) Localization of mRNA expression and activation of signal transduction mechanisms for cannabinoid receptor in rat brain during fetal development. Development 125:3179–3188

    CAS  Google Scholar 

  • Bohr N (1933) Light and life. Nature 131:421–423

    Article  Google Scholar 

  • Dytham C (2011) Choosing and using statistics: a biologist’s guide. Wiley-Blackwell, Oxford

    Google Scholar 

  • Eads BD, Colbourne JK, Bohuski E, Andrews J (2007) Profiling sex-biased gene expression during parthenogenetic reproduction in Daphnia pulex. BMC Genomics 8:1–14

    Article  Google Scholar 

  • Gruijl FR, Kranen HJ, Mullenders LH (2001) UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B Biol 63:19–27

    Article  Google Scholar 

  • Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T (2003) UV-induced skin damage. Toxicology 189:21–39

    Article  CAS  Google Scholar 

  • Jokinen IE, Markkula ES, Salo HM, Kuhn P, Nikoskelainen S, Arts MT, Browman HI (2008) Exposure to increased ambient ultraviolet B radiation has negative effects on growth, condition and immune function of juvenile Atlantic salmon (Salmo salar). Photochem Photobiol 84:1265–1271

    Article  CAS  Google Scholar 

  • Lange H, Donk E (1997) Effects of UVB-irradiated algae on life history traits of Daphnia pulex. Freshwater Biol 38:711–720

    Article  Google Scholar 

  • Lange HJ, Reeuwijk PL (2003) Negative effects of UVB-irradiated phytoplankton on life history traits and fitness of Daphnia magna. Freshwater Biol 48:678–686

    Article  Google Scholar 

  • Lopo AB, Spyrides MHC, Lucio PS, Sigró J (2013) Ozone and aerosol influence on ultraviolet radiation on the east coast of the Brazilian Northeast. Atmos Climate Sci 4:92–99

    Google Scholar 

  • Marionnet C, Pierrard C, Golebiewski C, Bernerd F (2014) Diversity of biological effects induced by longwave UVA rays (UVA1) in reconstructed skin. PLoS One 9:e105263

    Article  CAS  Google Scholar 

  • Maverakis E, Miyamura Y, Bowen MP, Correa G, Ono Y, Goodarzi H (2010) Light, including ultraviolet. J Autoimmun 34:247–257

    Article  CAS  Google Scholar 

  • Morgan J, Iwama G (1991) Effects of salinity on growth, metabolism, and on regulation in juvenile rainbow and steel2head trout and fall chinook salmon. Can J Fish Aquat Sci 8:2083–2094

    Article  Google Scholar 

  • Noble WS (2009) How does multiple testing correction work? Nat Biotechnol 27:1135–1137

    Article  CAS  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  CAS  Google Scholar 

  • Pfeifer GP, Besaratinia A (2012) UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem Photobiol Sci 11:90–97

    Article  CAS  Google Scholar 

  • Pfundt R, van Vlijmen-Willems I, Bergers M, Wingens M, Cloin W, Schalkwijk J (2001) In situ demonstration of phosphorylated c-jun and p38 MAP kinase in epidermal keratinocytes following ultraviolet B irradiation of human skin. J Pathol 193:248–255

    Article  CAS  Google Scholar 

  • Rainuzzo JR, Reitan KI, Olsen Y (1997) The significance of lipids at early stages of marine fish: a review. Aquaculture 155:103–115

    Article  CAS  Google Scholar 

  • Seah NE, Magalhaes Filho CD, Petrashen AP, Henderson HR, Laguer J, Gonzalez J et al (2016) Autophagy-mediated longevity is modulated by lipoprotein biogenesis. Autophagy 12:261–272

    Article  CAS  Google Scholar 

  • Shi M, Lin Y, Xu G, Xie L, Hu X, Bao Z, Zhang R (2013) Characterization of the Zhikong scallop (Chlamys farreri) mantle transcriptome and identification of biomineralization-related genes. Mar Biotechnol 15:706–715

    Article  CAS  Google Scholar 

  • Singh H, Rao BJ, Chary KV (2014) 1 H, 13 C and 15 N NMR assignments of a mutant of UV inducible transcript (S55A-UVI31+) from Chlamydomonas reinhardtii. Biomol NMR Assign 8:371–374

    Article  CAS  Google Scholar 

  • Storey JD (2003) The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat 31:2013–2035

    Article  Google Scholar 

  • Su W, Wei SS, Hu SQ, Tang JX (2009) Preparation of TiO2/Ag colloids with ultraviolet resistance and antibacterial property using short chain polyethylene glycol. J Hazard Mater 172:716–720

    Article  CAS  Google Scholar 

  • Sun X, Yang A, Wu B, Zhou L, Liu Z (2015) Characterization of the mantle transcriptome of Yesso scallop (Patinopecten yessoensis): identification of genes potentially involved in biomineralization and pigmentation. PLoS One 10:e0122967

    Article  CAS  Google Scholar 

  • Tartarotti B, Cabrera S, Psenner R, Sommaruga R (1999) Survivorship of Cyclops abyssorum tatricus (Cyclopoida, Copepoda) and Boeckella gracilipes (Calanoida, Copepoda) under ambient levels of solar UVB radiation in two high-mountain lakes. J Plankton Res 21:549–560

    Article  Google Scholar 

  • Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52:639–672

    CAS  Google Scholar 

  • Webb AR, Kline L, Holick MF (1988) Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab 67:373–378

    Article  CAS  Google Scholar 

  • Xu L, Zhao W, Xu X, Wei J, Shi X (2007) Effect of ultraviolet radiation on growth, development and reproduction of Moina mongolica Daday. J Agric Biotechnol 15:789–792 (In Chinese)

    CAS  Google Scholar 

  • Zellmer ID (1996) The impact of food quantity on UV-B tolerance and recovery from UV-B damage in Daphnia pulex. Hydrobiologia 319:87–92

    Article  Google Scholar 

  • Zhang P, Li C, Zhu L, Su X, Li Y, Jin C, Li T (2013) De novo assembly of the sea cucumber Apostichopus japonicus hemocytes transcriptome to identify miRNA targets associated with skin ulceration syndrome. PLoS One 8:e73506

    Article  CAS  Google Scholar 

  • Zhang YN, Zhu XY, Wang WP, Wang Y, Wang L, Xu XX, Zhang K, Deng DG (2016) Reproductive switching analysis of Daphnia similoides between sexual female and parthenogenetic female by transcriptome comparison. Sci Rep 6:34241

    Article  CAS  Google Scholar 

  • Zhao W, Huo Y, Gao J (2006) Analysis and appraisement of nutrient compositions for Daphniopsis tibetana Sars. J Fish Sci China 13:446–451 (In Chinese)

    CAS  Google Scholar 

  • Zhao L, Liu L, Wang S, Wang H, Jiang J (2016a) Transcriptome profiles of metamorphosis in the ornamented pygmy frog Microhyla fissipes clarify the functions of thyroid hormone receptors in metamorphosis. Sci Rep 6:27310

    Article  CAS  Google Scholar 

  • Zhao W, Zhao YY, Wang QH, Zhen MP, Wei J, Wang S (2016b) The community structure and seasonal dynamics of plankton in Bange Lake, northern Tibet, China. Chin J Oceanol Limnol 34:1143–1157

    Article  CAS  Google Scholar 

  • Zhao W, Huo YZ, Zhang TM, Wang S, Shi TT (2017a) Effects of lithium on the survival, growth, and reproduction of Daphniopsis tibetana Sars (Crustacea: Cladocera). Chin J Oceanol Limnol 35:754–762

    Article  CAS  Google Scholar 

  • Zhao W, You ZX, Wei J, Wang S (2017b) Compensatory population growth in Daphniopsis tibetana Sars (Crustacea: Cladocera) following starvation. Limnology 18:167–174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Robbie Lewis, MSc, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

This work was supported by a grant from the National Natural Science Foundation of China (No. 41501535).

Author information

Authors and Affiliations

Authors

Contributions

W. Z. and M. R. W. conceived and designed the experiments. The experiments were performed by M. R. W., W. Z., J. W., S. W., and X.X. Data was analyzed by W. Z. and M. R. W. The paper was written by M. R. W. and W. Z.

Corresponding author

Correspondence to Wen Zhao.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zhao, W., Wei, J. et al. Acute effects of UVB radiation on the survival, growth, development, and reproduction of Daphniopsis tibetana Sars (Crustacea: Cladocera). Environ Sci Pollut Res 26, 10916–10925 (2019). https://doi.org/10.1007/s11356-019-04490-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04490-x

Keywords

Navigation