Assessment of the impact of heavy metals in sediments along the Spanish Mediterranean coastline: pollution indices

Abstract

A comprehensive study was carried out to evaluate the occurrence, significance of concentrations and spatial distribution of heavy metals (Cr, Cd, Ni, Cu, Pb, Hg, Zn and As) in sediments along the Valencia coastline (Spain). The sampling campaign covered 476 km of the coastline in a 4-year period. The highest concentrations of metals in the sediments were mainly Cr, Ni, Zn and Cd (up to 28.93 mg Cr kg−1 dw, 15.80 mg Ni kg−1 dw, 57.13 mg Zn kg−1 dw and 0.293 mg Cd kg−1 dw), obtained in the northern areas, some central areas and in an isolated area on the southern coastline. The Sediment Quality Guidelines applied reveal that for all metals studied, none of them reached, or exceed, the “effects of median range” or the “probable effect level”. The pollution index reveals that 75% of the stretch coastline has a low priority risk level and the rest “medium-low priority risk level”. And, lastly, Potential Ecological Risk Index shows that all but one zone have low ecological risk.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factor sand the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238. https://doi.org/10.1007/s10661-007-9678-2

    Article  CAS  Google Scholar 

  2. Adriano D (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals. Springer-Verlag, New York 866 pp

    Google Scholar 

  3. Alvarez-Guerra M, Viguri J, Casado-Martınez MC, Angel DelValls T (2007) Sediment quality assessment and dredged material management in Spain: part I, application of sediment quality guidelines in the Bay of Santander. Integr Environ Assess Manag 3:529–538

    Article  CAS  Google Scholar 

  4. Amos HM, Jacob DJ, Holmes CD, Fisher JA, Wang Q, Yantosca RM, Corbitt ES, Galarneau E, Rutter A, Gustin MS, Steffen A, Schauer JJ, Graydon JA, St. Louis VL, Talbot RW, Edgerton ES, Zhang Y, Sunderland EM (2012) Gas-particle partitioning of atmospheric Hg (II) and its effect on global mercury deposition. Atmos Chem Phys 12:591–603. https://doi.org/10.5194/acp-12-591-2012

    Article  CAS  Google Scholar 

  5. APHA (2012) Standard methods for the examination of water and wastewater, 21th. American Public Health Association, American Water Works Association, Water Environment Federation, Washington

    Google Scholar 

  6. Badri MA, Aston SR (1983) Observation on heavy metals geochemical associations in polluted and nonpolluted estuarine sediments. Environ Pollut (Ser B) 6:181–193

    Article  CAS  Google Scholar 

  7. Barhoumi B, Jouili S, Derouiche A, Elbarhoumi A, Mahfoudhi G, Atyaoui A, Bouabdallah S, Touil S, Ridha Driss M (2017) Sediment baseline study of levels, distributions and potential ecological risks of heavy metals in Bahiret El Bibane Lagoon (Tunisia, southwestern Mediterranean Sea). GERF Bull Biosci 8:1–14

    Google Scholar 

  8. Caeiro S, Costa MH, Ramos TB, Fernandes F, Silveira N, Coimbra A, Medeiros G, Painho M (2005) Assessing heavy metal contamination in Sado Estuary sediment, an index analysis approach. Ecol Indic 5:151–169. https://doi.org/10.1016/j.ecolind.2005.02.001

    Article  CAS  Google Scholar 

  9. Casado-Martínez MC, Forja JM, DelValls TA (2009) A multivariate assessment of sediment contamination in dredged materials from Spanish ports. J Hazard Mater 163:1353–1359. https://doi.org/10.1016/j.jhazmat.2008.07.106

    Article  CAS  Google Scholar 

  10. Christophoridis C, Dedepsidis D, Fytianos K (2009) Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. J Hazard Mater 168:1082–1091. https://doi.org/10.1016/j.jhazmat.2009.02.154

    Article  CAS  Google Scholar 

  11. Cochran JK, Frignani M, Salamanca M, Bellucci LG, Guerzoni S (1998) Lead-210 as a tracer of atmospheric input of heavy metals in the northern Venice Lagoon. Mar Chem 62:15–29

    Article  CAS  Google Scholar 

  12. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council

  13. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy text with EEA relevance

  14. Donze M, Nieuwendijk C, Boxtel A, Quaak M (1990) Shaping the environment: aquatic pollution and dredging in the European community. Delwel Publishers, Hague 184 pp

    Google Scholar 

  15. EPA Method 3051A (2007) Microwave assisted acid digestion of sediments, sludges, soils, and oils. Washington, DC. https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf. Accessed May 2017

  16. Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324. https://doi.org/10.1016/S0269-7491(00)00243-8

    Article  CAS  Google Scholar 

  17. Förstner U, Wittmann GT (1981) Metal pollution in the aquatic environment. Springer-Verlag, London

    Google Scholar 

  18. Gao X, Chen CTA (2012) Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res 46:1901–1911. https://doi.org/10.1016/j.watres.2012.01.007

    Article  CAS  Google Scholar 

  19. GVA (2009) IMPRESS Document. Artícle 5 of the Water Framework Directive

  20. Hakanson L (1980) An ecological risk index for aquatic pollution control, a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  21. Hosono T, Su CC, Siringan F, Amano A, Onodera S (2010) Effects of environmental regulations on heavy metal pollution decline in core sediments from Manila Bay. Mar Pollut Bull 60:780–785. https://doi.org/10.1016/j.marpolbul.2010.03.005

    Article  CAS  Google Scholar 

  22. Ip CCM, Li XD, Zhang G, Wai OWH, Li YS (2007) Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environ Pollut 147:311–323. https://doi.org/10.1016/j.envpol.2006.06.028

    Article  CAS  Google Scholar 

  23. Johnston EL, Roberts DA (2009) Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Environ Pollut 157(6):1745–1752. https://doi.org/10.1016/j.envpol.2009.02.017

    Article  CAS  Google Scholar 

  24. Konstantinou IK, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248. https://doi.org/10.1016/S0160-4120(03)00176-4

    Article  CAS  Google Scholar 

  25. Kuwabara JS, Alpers CN, Marvin-Di Pasquale M, Topping BR, Carter JL, Stewart AR, Fend SV, Parchaso F, Moon GE, Krabbenhoft DP (2003) Sediment-water interactions affecting dissolved-mercury distributions in Camp Far West Reservoir, California. Publications of the US Geological Survey 53. http://digitalcommons.unl.edu/usgspubs/53. Accessed Feb 2018

  26. Leivouri M (1998) Heavy metal contamination in surface sediments in the Gulf of Finland and comparison with the Gulf of Bothnia. Chemosphere 36(1):43–59

    Article  Google Scholar 

  27. Li XD, Wai OWH, Li YS, Coles BJ, Ramsey MH, Thornton I (2000) Heavy metal distribution in sediment profiles of the Pearl River estuary, South China. Appl Geochem 15:567–581

    Article  CAS  Google Scholar 

  28. Li F, Huang J, Zeng G, Yuan X, Li X, Liang J, Wang X, Tang X, Bai B (2013) Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J Geochem Explor 132:75–83. https://doi.org/10.1016/j.gexplo.2013.05.007

    Article  CAS  Google Scholar 

  29. Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97

    Article  Google Scholar 

  30. Long ER, Field LJ, Macdonald DD (1998) Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ Toxicol Chem 17(4):714–727

    Article  CAS  Google Scholar 

  31. Long ER, MacDonald DD, Severn CG, Hong CB (2000) Classifying the probabilities of acute toxicity in marine sediments with empirically derived sediment quality guidelines. Environ Toxicol Chem 19:2598–2601

    Article  CAS  Google Scholar 

  32. López P (1986) Composición del sedimento en sistemas acuáticos del litoral Mediterráneo Español. Limnética 2:11–18

    Google Scholar 

  33. Loska K, Wiechula D (2003) Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51:723–733. https://doi.org/10.1016/S0045-6535(03)00187-5

    Article  CAS  Google Scholar 

  34. Luoma SN (1990) Processes affecting metal concentrations in estuarine and coastal marine sediments. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press, Boca Raton, pp 51–66

    Google Scholar 

  35. Macdonald DD, Carr RS, Calder FD, Long ER, Ingersoll CG (1996) Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5:253–278

    Article  CAS  Google Scholar 

  36. Mason RP, Sheu GR (2002) Role of the ocean in the global mercury cycle. Glob Biogeochem Cycles 16(4):1–14. https://doi.org/10.1029/2001GB001440

    Article  CAS  Google Scholar 

  37. Micó C, Peris M, Sánchez J, Recatalá L (2006) Heavy metal content of agricultural soils in a Mediterranean semiarid area: the Segura River Valley (Alicante, Spain). Span J Agric Res 4(4):363–372

    Article  Google Scholar 

  38. Palanques A, Díaz JI (1990) Contaminación de metales pesados en los sedimentos superficiales de la plataforma continental de Barcelona (Mediterráneo Noroccidental). Rev Soc Geol Esp 3(3–4):357–371

    Google Scholar 

  39. Parks R, Donnier-Marechal M, Frickers P, Turner A, Readman J (2010) Antifouling biocides in discarded marine paint particles. Mar Pollut Bull 60:1226–1230. https://doi.org/10.1016/j.marpolbul.2010.03.022

    Article  CAS  Google Scholar 

  40. Pejman A, Bidhendi GN, Ardestani M, Mohsen Saeedi M, Akbar Baghvand A (2015) A new index for assessing heavy metals contamination in sediments: a case study. Ecol Indic 58:365–373. https://doi.org/10.1016/j.ecolind.2015.06.012

    Article  CAS  Google Scholar 

  41. PRTR-España (2016) Spanish Register of Emissions and Pollutant Sources. http://www.prtr-es.es/. Accessed December 2017

  42. Pynaert K, Speleers L (2005) Development of an integrated approach for the removal of tributyltin (TBT) from waterways and harbours: prevention, treatment and reuse of TBT contaminated sediments. Report by the Environmental Research Center, Hofstade-Aalst, Belgium, 52 pp

  43. Rada RG, Wiener JG, Winfrey MR, Powel DE (1989) Recent increase in atmospheric deposition of mercury to North Central Wiscosin lakes from sediment analyses. Arch Environ Contam Toxicol 18:175–181. https://doi.org/10.1007/BF01056202

    Article  CAS  Google Scholar 

  44. Rainbow PS (1995) Biomonitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31(4–12):183–192. https://doi.org/10.1016/0025-326X(95)00116-5

    Article  CAS  Google Scholar 

  45. Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346(1–3):1–16. https://doi.org/10.1016/j.scitotenv.2004.11.023

    Article  CAS  Google Scholar 

  46. Riba I, Casado-Martínez C, Forja JM, Del Vall A (2004) Sediment quality in the Atlantic coast of Spain. Environ Toxicol Chem 23:271–282

    Article  CAS  Google Scholar 

  47. Romero I, Pachés M, Martínez-Guijarro R, Ferrer J (2013) Glophymed: an index to establish the ecological status for the Water Framework Directive based on phytoplankton in coastal waters. Mar Pollut Bull 75:218–223. https://doi.org/10.1016/j.marpolbul.2013.07.028

    Article  CAS  Google Scholar 

  48. Sanchiz C, García-Carrascosa A, Pastor A (2000) Heavy metal contents in soft-bottom marine macrophytes and sediments along the Mediterranean coast of Spain. Mar Ecol 21(1):1–16

    Article  CAS  Google Scholar 

  49. Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy V (2011) Influence of mineralogical and heavy metal composition on natural radionuclide contents in the river sediments. Appl Radiat Isot 69:1466–1474. https://doi.org/10.1016/j.apradiso.2011.05.020

    Article  CAS  Google Scholar 

  50. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192

    Article  CAS  Google Scholar 

  51. Turley PA, Fern RJ, Ritter JC (2000) Pyrithione as antifoulants: environmental chemistry and preliminary risk assessment. Biofouling 15:175–182. https://doi.org/10.1080/08927010009386308

    Article  CAS  Google Scholar 

  52. Upadhyay AK, Gupta KK, Sircar JK (2006) Heavy metals in freshly deposited sediments of the river Subernarekha, India: an example of lithogenic and anthropogenic effects. Environ Geol 50:397–403. https://doi.org/10.1007/s00254-006-0218-0

    Article  CAS  Google Scholar 

  53. Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051

  54. Wenning RJ, Ingersoll CG (eds) (2002) Executive summary of the SETAC Pellston workshop on use of sediment quality guidelines and related tools for the assessment of contaminated sediments. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola

    Google Scholar 

  55. Yalcin MG, Tumuklu A, Sonmez M, Erdag DS (2010) Application of multivariate statistical approach to identify heavy metal sources in bottom soil of the Seyhan River (Adana), Turkey. Environ Monit Assess 164(1–4):311–322. https://doi.org/10.1007/s10661-009-0894-9

    Article  CAS  Google Scholar 

  56. Zhang Z, Juying L, Mamat Z, QingFu Y (2016) Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicol Environ Saf 126:94–101. https://doi.org/10.1016/j.ecoenv.2015.12.025

    Article  CAS  Google Scholar 

  57. Zhao S, Feng C, Wang D, Tian C, Shen Z (2014) Relationship of metal enrichment with adverse biological effect in the Yangtze Estuary sediments: role of metal background values. Environ Sci Pollut Res 21:464–472. https://doi.org/10.1007/s11356-013-1856-x

    Article  CAS  Google Scholar 

  58. Zhou J, Ma D, Pan J, Nie W, Wu K (2008) Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: a case study in Yangzhong, China. Environ Geol 54:373–380. https://doi.org/10.1007/s00254-007-0824-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work has been supported by the Generalitat Valenciana as part of the studies involved in the Water Framework Directive.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Remedios Martínez-Guijarro.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paches, M., Martínez-Guijarro, R., Aguado, D. et al. Assessment of the impact of heavy metals in sediments along the Spanish Mediterranean coastline: pollution indices. Environ Sci Pollut Res 26, 10887–10901 (2019). https://doi.org/10.1007/s11356-019-04485-8

Download citation

Keywords

  • Heavy metals
  • Sediment pollution
  • Risk assessment
  • Ecological risk indices
  • Background enrichment indices
  • Environmental impact
  • Pollution effects