Skip to main content

Assessment of the impact of heavy metals in sediments along the Spanish Mediterranean coastline: pollution indices

Abstract

A comprehensive study was carried out to evaluate the occurrence, significance of concentrations and spatial distribution of heavy metals (Cr, Cd, Ni, Cu, Pb, Hg, Zn and As) in sediments along the Valencia coastline (Spain). The sampling campaign covered 476 km of the coastline in a 4-year period. The highest concentrations of metals in the sediments were mainly Cr, Ni, Zn and Cd (up to 28.93 mg Cr kg−1 dw, 15.80 mg Ni kg−1 dw, 57.13 mg Zn kg−1 dw and 0.293 mg Cd kg−1 dw), obtained in the northern areas, some central areas and in an isolated area on the southern coastline. The Sediment Quality Guidelines applied reveal that for all metals studied, none of them reached, or exceed, the “effects of median range” or the “probable effect level”. The pollution index reveals that 75% of the stretch coastline has a low priority risk level and the rest “medium-low priority risk level”. And, lastly, Potential Ecological Risk Index shows that all but one zone have low ecological risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factor sand the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238. https://doi.org/10.1007/s10661-007-9678-2

    Article  CAS  Google Scholar 

  • Adriano D (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals. Springer-Verlag, New York 866 pp

    Book  Google Scholar 

  • Alvarez-Guerra M, Viguri J, Casado-Martınez MC, Angel DelValls T (2007) Sediment quality assessment and dredged material management in Spain: part I, application of sediment quality guidelines in the Bay of Santander. Integr Environ Assess Manag 3:529–538

    Article  CAS  Google Scholar 

  • Amos HM, Jacob DJ, Holmes CD, Fisher JA, Wang Q, Yantosca RM, Corbitt ES, Galarneau E, Rutter A, Gustin MS, Steffen A, Schauer JJ, Graydon JA, St. Louis VL, Talbot RW, Edgerton ES, Zhang Y, Sunderland EM (2012) Gas-particle partitioning of atmospheric Hg (II) and its effect on global mercury deposition. Atmos Chem Phys 12:591–603. https://doi.org/10.5194/acp-12-591-2012

    Article  CAS  Google Scholar 

  • APHA (2012) Standard methods for the examination of water and wastewater, 21th. American Public Health Association, American Water Works Association, Water Environment Federation, Washington

    Google Scholar 

  • Badri MA, Aston SR (1983) Observation on heavy metals geochemical associations in polluted and nonpolluted estuarine sediments. Environ Pollut (Ser B) 6:181–193

    Article  CAS  Google Scholar 

  • Barhoumi B, Jouili S, Derouiche A, Elbarhoumi A, Mahfoudhi G, Atyaoui A, Bouabdallah S, Touil S, Ridha Driss M (2017) Sediment baseline study of levels, distributions and potential ecological risks of heavy metals in Bahiret El Bibane Lagoon (Tunisia, southwestern Mediterranean Sea). GERF Bull Biosci 8:1–14

    Google Scholar 

  • Caeiro S, Costa MH, Ramos TB, Fernandes F, Silveira N, Coimbra A, Medeiros G, Painho M (2005) Assessing heavy metal contamination in Sado Estuary sediment, an index analysis approach. Ecol Indic 5:151–169. https://doi.org/10.1016/j.ecolind.2005.02.001

    Article  CAS  Google Scholar 

  • Casado-Martínez MC, Forja JM, DelValls TA (2009) A multivariate assessment of sediment contamination in dredged materials from Spanish ports. J Hazard Mater 163:1353–1359. https://doi.org/10.1016/j.jhazmat.2008.07.106

    Article  CAS  Google Scholar 

  • Christophoridis C, Dedepsidis D, Fytianos K (2009) Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. J Hazard Mater 168:1082–1091. https://doi.org/10.1016/j.jhazmat.2009.02.154

    Article  CAS  Google Scholar 

  • Cochran JK, Frignani M, Salamanca M, Bellucci LG, Guerzoni S (1998) Lead-210 as a tracer of atmospheric input of heavy metals in the northern Venice Lagoon. Mar Chem 62:15–29

    Article  CAS  Google Scholar 

  • Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council

  • Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy text with EEA relevance

  • Donze M, Nieuwendijk C, Boxtel A, Quaak M (1990) Shaping the environment: aquatic pollution and dredging in the European community. Delwel Publishers, Hague 184 pp

    Google Scholar 

  • EPA Method 3051A (2007) Microwave assisted acid digestion of sediments, sludges, soils, and oils. Washington, DC. https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf. Accessed May 2017

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324. https://doi.org/10.1016/S0269-7491(00)00243-8

    Article  CAS  Google Scholar 

  • Förstner U, Wittmann GT (1981) Metal pollution in the aquatic environment. Springer-Verlag, London

    Book  Google Scholar 

  • Gao X, Chen CTA (2012) Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res 46:1901–1911. https://doi.org/10.1016/j.watres.2012.01.007

    Article  CAS  Google Scholar 

  • GVA (2009) IMPRESS Document. Artícle 5 of the Water Framework Directive

  • Hakanson L (1980) An ecological risk index for aquatic pollution control, a sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Hosono T, Su CC, Siringan F, Amano A, Onodera S (2010) Effects of environmental regulations on heavy metal pollution decline in core sediments from Manila Bay. Mar Pollut Bull 60:780–785. https://doi.org/10.1016/j.marpolbul.2010.03.005

    Article  CAS  Google Scholar 

  • Ip CCM, Li XD, Zhang G, Wai OWH, Li YS (2007) Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environ Pollut 147:311–323. https://doi.org/10.1016/j.envpol.2006.06.028

    Article  CAS  Google Scholar 

  • Johnston EL, Roberts DA (2009) Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Environ Pollut 157(6):1745–1752. https://doi.org/10.1016/j.envpol.2009.02.017

    Article  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248. https://doi.org/10.1016/S0160-4120(03)00176-4

    Article  CAS  Google Scholar 

  • Kuwabara JS, Alpers CN, Marvin-Di Pasquale M, Topping BR, Carter JL, Stewart AR, Fend SV, Parchaso F, Moon GE, Krabbenhoft DP (2003) Sediment-water interactions affecting dissolved-mercury distributions in Camp Far West Reservoir, California. Publications of the US Geological Survey 53. http://digitalcommons.unl.edu/usgspubs/53. Accessed Feb 2018

  • Leivouri M (1998) Heavy metal contamination in surface sediments in the Gulf of Finland and comparison with the Gulf of Bothnia. Chemosphere 36(1):43–59

    Article  Google Scholar 

  • Li XD, Wai OWH, Li YS, Coles BJ, Ramsey MH, Thornton I (2000) Heavy metal distribution in sediment profiles of the Pearl River estuary, South China. Appl Geochem 15:567–581

    Article  CAS  Google Scholar 

  • Li F, Huang J, Zeng G, Yuan X, Li X, Liang J, Wang X, Tang X, Bai B (2013) Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J Geochem Explor 132:75–83. https://doi.org/10.1016/j.gexplo.2013.05.007

    Article  CAS  Google Scholar 

  • Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97

    Article  Google Scholar 

  • Long ER, Field LJ, Macdonald DD (1998) Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ Toxicol Chem 17(4):714–727

    Article  CAS  Google Scholar 

  • Long ER, MacDonald DD, Severn CG, Hong CB (2000) Classifying the probabilities of acute toxicity in marine sediments with empirically derived sediment quality guidelines. Environ Toxicol Chem 19:2598–2601

    Article  CAS  Google Scholar 

  • López P (1986) Composición del sedimento en sistemas acuáticos del litoral Mediterráneo Español. Limnética 2:11–18

    Google Scholar 

  • Loska K, Wiechula D (2003) Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51:723–733. https://doi.org/10.1016/S0045-6535(03)00187-5

    Article  CAS  Google Scholar 

  • Luoma SN (1990) Processes affecting metal concentrations in estuarine and coastal marine sediments. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press, Boca Raton, pp 51–66

    Google Scholar 

  • Macdonald DD, Carr RS, Calder FD, Long ER, Ingersoll CG (1996) Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5:253–278

    Article  CAS  Google Scholar 

  • Mason RP, Sheu GR (2002) Role of the ocean in the global mercury cycle. Glob Biogeochem Cycles 16(4):1–14. https://doi.org/10.1029/2001GB001440

    Article  CAS  Google Scholar 

  • Micó C, Peris M, Sánchez J, Recatalá L (2006) Heavy metal content of agricultural soils in a Mediterranean semiarid area: the Segura River Valley (Alicante, Spain). Span J Agric Res 4(4):363–372

    Article  Google Scholar 

  • Palanques A, Díaz JI (1990) Contaminación de metales pesados en los sedimentos superficiales de la plataforma continental de Barcelona (Mediterráneo Noroccidental). Rev Soc Geol Esp 3(3–4):357–371

    Google Scholar 

  • Parks R, Donnier-Marechal M, Frickers P, Turner A, Readman J (2010) Antifouling biocides in discarded marine paint particles. Mar Pollut Bull 60:1226–1230. https://doi.org/10.1016/j.marpolbul.2010.03.022

    Article  CAS  Google Scholar 

  • Pejman A, Bidhendi GN, Ardestani M, Mohsen Saeedi M, Akbar Baghvand A (2015) A new index for assessing heavy metals contamination in sediments: a case study. Ecol Indic 58:365–373. https://doi.org/10.1016/j.ecolind.2015.06.012

    Article  CAS  Google Scholar 

  • PRTR-España (2016) Spanish Register of Emissions and Pollutant Sources. http://www.prtr-es.es/. Accessed December 2017

  • Pynaert K, Speleers L (2005) Development of an integrated approach for the removal of tributyltin (TBT) from waterways and harbours: prevention, treatment and reuse of TBT contaminated sediments. Report by the Environmental Research Center, Hofstade-Aalst, Belgium, 52 pp

  • Rada RG, Wiener JG, Winfrey MR, Powel DE (1989) Recent increase in atmospheric deposition of mercury to North Central Wiscosin lakes from sediment analyses. Arch Environ Contam Toxicol 18:175–181. https://doi.org/10.1007/BF01056202

    Article  CAS  Google Scholar 

  • Rainbow PS (1995) Biomonitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31(4–12):183–192. https://doi.org/10.1016/0025-326X(95)00116-5

    Article  CAS  Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Total Environ 346(1–3):1–16. https://doi.org/10.1016/j.scitotenv.2004.11.023

    Article  CAS  Google Scholar 

  • Riba I, Casado-Martínez C, Forja JM, Del Vall A (2004) Sediment quality in the Atlantic coast of Spain. Environ Toxicol Chem 23:271–282

    Article  CAS  Google Scholar 

  • Romero I, Pachés M, Martínez-Guijarro R, Ferrer J (2013) Glophymed: an index to establish the ecological status for the Water Framework Directive based on phytoplankton in coastal waters. Mar Pollut Bull 75:218–223. https://doi.org/10.1016/j.marpolbul.2013.07.028

    Article  CAS  Google Scholar 

  • Sanchiz C, García-Carrascosa A, Pastor A (2000) Heavy metal contents in soft-bottom marine macrophytes and sediments along the Mediterranean coast of Spain. Mar Ecol 21(1):1–16

    Article  CAS  Google Scholar 

  • Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy V (2011) Influence of mineralogical and heavy metal composition on natural radionuclide contents in the river sediments. Appl Radiat Isot 69:1466–1474. https://doi.org/10.1016/j.apradiso.2011.05.020

    Article  CAS  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192

    Article  CAS  Google Scholar 

  • Turley PA, Fern RJ, Ritter JC (2000) Pyrithione as antifoulants: environmental chemistry and preliminary risk assessment. Biofouling 15:175–182. https://doi.org/10.1080/08927010009386308

    Article  CAS  Google Scholar 

  • Upadhyay AK, Gupta KK, Sircar JK (2006) Heavy metals in freshly deposited sediments of the river Subernarekha, India: an example of lithogenic and anthropogenic effects. Environ Geol 50:397–403. https://doi.org/10.1007/s00254-006-0218-0

    Article  CAS  Google Scholar 

  • Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051

  • Wenning RJ, Ingersoll CG (eds) (2002) Executive summary of the SETAC Pellston workshop on use of sediment quality guidelines and related tools for the assessment of contaminated sediments. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola

    Google Scholar 

  • Yalcin MG, Tumuklu A, Sonmez M, Erdag DS (2010) Application of multivariate statistical approach to identify heavy metal sources in bottom soil of the Seyhan River (Adana), Turkey. Environ Monit Assess 164(1–4):311–322. https://doi.org/10.1007/s10661-009-0894-9

    Article  CAS  Google Scholar 

  • Zhang Z, Juying L, Mamat Z, QingFu Y (2016) Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China. Ecotoxicol Environ Saf 126:94–101. https://doi.org/10.1016/j.ecoenv.2015.12.025

    Article  CAS  Google Scholar 

  • Zhao S, Feng C, Wang D, Tian C, Shen Z (2014) Relationship of metal enrichment with adverse biological effect in the Yangtze Estuary sediments: role of metal background values. Environ Sci Pollut Res 21:464–472. https://doi.org/10.1007/s11356-013-1856-x

    Article  CAS  Google Scholar 

  • Zhou J, Ma D, Pan J, Nie W, Wu K (2008) Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: a case study in Yangzhong, China. Environ Geol 54:373–380. https://doi.org/10.1007/s00254-007-0824-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work has been supported by the Generalitat Valenciana as part of the studies involved in the Water Framework Directive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remedios Martínez-Guijarro.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paches, M., Martínez-Guijarro, R., Aguado, D. et al. Assessment of the impact of heavy metals in sediments along the Spanish Mediterranean coastline: pollution indices. Environ Sci Pollut Res 26, 10887–10901 (2019). https://doi.org/10.1007/s11356-019-04485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04485-8

Keywords

  • Heavy metals
  • Sediment pollution
  • Risk assessment
  • Ecological risk indices
  • Background enrichment indices
  • Environmental impact
  • Pollution effects