The impact of particulate matter on allergy risk among adults: integrated exposure assessment

Abstract

Exposure assessment is an important part in environmental epidemiology for determining the associations of environmental factors with health effects. One of the greatest challenges for personal exposure assessment is associated with peoples’ mobility during the day and spatial and temporal dynamics of air pollution. In this study, the impact of PM10 (particulate matter less than 10 μm) on allergy risk among adults was assessed using objective methods of exposure assessment. The primary objective of the present study was to estimate personal exposure to PM10 based on individual daily movement patterns. Significant differences between the concentration of PM10 in different microenvironments (MEs) and personal exposure to PM10 were determined. Home exposure accounted for the largest part of PM10 exposure. Thirty-five percent of PM10 exposure was received in other non-home MEs. Allergy risk increased significantly with increasing exposure to PM10. Adults exposed to the highest levels of PM10 exposure had a twice-higher risk of allergies than adults exposed to the lowest levels of PM10 exposure. The study results have practical relevance for exposure assessment to environmental factors and its impact on health effects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Adam M, Schikowski T, Carsin AE, Cai Y, Jacquemin B, Sanchez M, Vierkötter A, Marcon A, Keidel D, Sugiri D, Al Kanani Z, Nadif R, Siroux V, Hardy R, Kuh D, Rochat T, Bridevaux PO, Eeftens M, Tsai MY, Villani S, Phuleria HC, Birk M, Cyrys J, Cirach M, de Nazelle A, Nieuwenhuijsen MJ, Forsberg B, de Hoogh K, Declerq C, Bono R, Piccioni P, Quass U, Heinrich J, Jarvis D, Pin I, Beelen R, Hoek G, Brunekreef B, Schindler C, Sunyer J, Krämer U, Kauffmann F, Hansell AL, Künzli N, Probst-Hensch N (2015) Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis. Eur Respir J 45:38–50. https://doi.org/10.1183/09031936.00130014

    Article  CAS  Google Scholar 

  2. Agrawal S (2012) Effect of indoor air pollution from biomass and solid fuel combustion on prevalence of self-reported asthma among adult men and women in India: findings from a nationwide large-scale cross-sectional survey. J Asthma 49:355–365. https://doi.org/10.3109/02770903.2012.663030

    Article  CAS  Google Scholar 

  3. Baldacci S, Maio S, Cerrai S, Sarno G, Baïz N, Simoni M, Annesi-Maesano I, Viegi G, HEALS Study (2015) Allergy and asthma: effects of the exposure to particulate matter and biological allergens. Respir Med 109:1089–1104. https://doi.org/10.1016/j.rmed.2015.05.017

    Article  CAS  Google Scholar 

  4. Berger A (2000) Science commentary: Th1 and Th2 responses: what are they? BMJ 321:424–424. https://doi.org/10.1136/bmj.321.7258.424

    Article  CAS  Google Scholar 

  5. Dadvand P, de Nazelle A, Triguero-Mas M, Schembari A, Cirach M, Amoly E, Figueras F, Basagaña X, Ostro B, Nieuwenhuijsen M (2012) Surrounding greenness and exposure to air pollution during pregnancy: an analysis of personal monitoring data. Environ Health Perspect 120:1286–1290. https://doi.org/10.1289/ehp.1104609

    Article  CAS  Google Scholar 

  6. Dalton AM, Wareham N, Griffin S, Jones AP (2016) Neighbourhood greenspace is associated with a slower decline in physical activity in older adults: a prospective cohort study. SSM Popul Health 2:683–691. https://doi.org/10.1016/j.ssmph.2016.09.006

    Article  Google Scholar 

  7. Darçın M (2014) Association between air quality and quality of life. Environ Sci Pollut Res 21:1954–1959. https://doi.org/10.1007/s11356-013-2101-3

    Article  CAS  Google Scholar 

  8. de Nazelle A, Seto E, Donaire-Gonzalez D, Mendez M, Matamala J, Nieuwenhuijsen MJ, Jerrett M (2013) Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ Pollut 176:92–99. https://doi.org/10.1016/j.envpol.2012.12.032

    Article  CAS  Google Scholar 

  9. Dėdelė A, Miškinytė A (2015) The statistical evaluation and comparison of ADMS-Urban model for the prediction of nitrogen dioxide with air quality monitoring network. Environ Monit Assess 187:578. https://doi.org/10.1007/s10661-015-4810-1

    Article  CAS  Google Scholar 

  10. Devi JJ, Gupta T, Jat R, Tripathi SN (2013) Measurement of personal and integrated exposure to particulate matter and co-pollutant gases. Environ Sci Pollut Res 20:1632–1648. https://doi.org/10.1007/s11356-012-1179-3

    Article  CAS  Google Scholar 

  11. Dewulf B, Neutens T, Lefebvre W, Seynaeve G, Vanpoucke C, Beckx C, Van de Weghe N (2016) Dynamic assessment of exposure to air pollution using mobile phone data. Int J Health Geogr 15:14. https://doi.org/10.1186/s12942-016-0042-z

    Article  Google Scholar 

  12. Donaire-Gonzalez D, de Nazelle A, Seto E, Mendez M, Nieuwenhuijsen MJ, Jerrett M (2013) Comparison of physical activity measures using mobile phone-based calfit and actigraph. J Med Internet Res 15(6):e111. https://doi.org/10.2196/jmir.2470

    Article  Google Scholar 

  13. Duan N (1982) Models for human exposure to air pollution. Environ Int 8:305–309. https://doi.org/10.1016/0160-4120(82)90041-1

    Article  CAS  Google Scholar 

  14. Giovanis E, Ozdamar O (2018) Health status, mental health and air quality: evidence from pensioners in Europe. Environ Sci Pollut Res 25:14206–14225. https://doi.org/10.1007/s11356-018-1534-0

    Article  CAS  Google Scholar 

  15. Good N, Mölter A, Ackerson C, Bachand A, Carpenter T, Clark ML, Fedak KM, Kayne A, Koehler K, Moore B, L'Orange C, Quinn C, Ugave V, Stuart AL, Peel JL, Volckens J (2016) The Fort Collins commuter study: impact of route type and transport mode on personal exposure to multiple air pollutants. J Expo Sci Environ Epidemiol 26:397–404. https://doi.org/10.1038/jes.2015.68

    Article  CAS  Google Scholar 

  16. Guarnieri M, Balmes JR (2014) Outdoor air pollution and asthma. Lancet 383:1581–1592. https://doi.org/10.1016/S0140-6736(14)60617-6

    Article  CAS  Google Scholar 

  17. Gulliver J, Briggs DJ (2005) Time-space modeling of journey-time exposure to traffic-related air pollution using GIS. Environ Res 97:10–25. https://doi.org/10.1016/j.envres.2004.05.002

    Article  CAS  Google Scholar 

  18. Jacquemin B, Kauffmann F, Pin I, Le Moual N, Bousquet J, Gormand F, Just J, Nadif R, Pison C, Vervloet D, Künzli N, Siroux V, Epidemiological study on the Genetics and Environment of Asthma (EGEA) (2012) Air pollution and asthma control in the Epidemiological study on the Genetics and Environment of Asthma. J Epidemiol Community Health 66:796–802. https://doi.org/10.1136/jech.2010.130229

    Article  Google Scholar 

  19. James P, Banay RF, Hart JE, Laden F (2015) A review of the health benefits of greenness. Curr Epidemiol Rep 2:131–142. https://doi.org/10.1007/s40471-015-0043-7

    Article  Google Scholar 

  20. Janhäll S (2015) Review on urban vegetation and particle air pollution - deposition and dispersion. Atmos Environ 105:130–137. https://doi.org/10.1016/j.atmosenv.2015.01.052

    Article  CAS  Google Scholar 

  21. Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, Morrison J, Giovis C (2005) A review and evaluation of intraurban air pollution exposure models. J Expo Anal Environ Epidemiol 15:185–204. https://doi.org/10.1038/sj.jea.7500388

    Article  CAS  Google Scholar 

  22. Karanasiou A, Viana M, Querol X, Moreno T, de Leeuw F (2014) Assessment of personal exposure to particulate air pollution during commuting in European cities-recommendations and policy implications. Sci Total Environ 490:785–797. https://doi.org/10.1016/j.scitotenv.2014.05.036

    Article  CAS  Google Scholar 

  23. Kim KH, Jahan SA, Kabir E (2013) A review on human health perspective of air pollution with respect to allergies and asthma. Environ Int 59:41–52. https://doi.org/10.1016/j.envint.2013.05.007 Review

    Article  CAS  Google Scholar 

  24. Korek M, Johansson C, Svensson N, Lind T, Beelen R, Hoek G, Pershagen G, Bellander T (2016) Can dispersion modeling of air pollution be improved by land-use regression? An example from Stockholm, Sweden. J Expo Sci Environ Epidemiol 27:575–581. https://doi.org/10.1038/jes.2016.40

    Article  CAS  Google Scholar 

  25. Kornartit C, Sokhi RS, Burton MA, Ravindra K (2010) Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments. Environ Int 36:36–45. https://doi.org/10.1016/j.envint.2009.09.004

    Article  CAS  Google Scholar 

  26. Künzli N, Bridevaux PO, Liu LJS, Garcia-Esteban R, Schindler C, Gerbase MW, Sunyer J, Keidel D, Rochat T, Swiss Cohort Study on Air Pollution and Lung Diseases in Adults (2009) Traffic-related air pollution correlates with adult-onset asthma among never-smokers. Thorax 64:664–670. https://doi.org/10.1136/thx.2008.110031

    Article  Google Scholar 

  27. Kwan MP, Liu D, Vogliano J (2015) Assessing dynamic exposure to air pollution. In: Kwan MP, Richardson D, Wang D, Zhou C (eds) Space-time integration in geography and GIScience. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9205-9_16

    Google Scholar 

  28. Lee PH (2014) Is a cutoff of 10% appropriate for the change-in-estimate criterion of confounder identification? J Epidemiol 24:161–167. https://doi.org/10.2188/jea.JE20130062

    Article  Google Scholar 

  29. Lee ACK, Jordan HC, Horsley J (2015) Value of urban green spaces in promoting healthy living and wellbeing: prospects for planning. Risk Manag Healthc Policy 8:131–137. https://doi.org/10.2147/RMHP.S61654

    Article  Google Scholar 

  30. Lonati G, Ozgen S, Luraghi I, Giugliano M (2010) Particle number concentration at urban microenvironments. Chem Eng Trans 22:137–142. https://doi.org/10.3303/CET1022022

    Article  Google Scholar 

  31. Maio S, Baldacci S, Carrozzi L, Pistelli F, Angino A, Simoni M, Sarno G, Cerrai S, Martini F, Fresta M, Silvi P, Di Pede F, Guerriero M, Viegi G (2016) Respiratory symptoms/diseases prevalence is still increasing: a 25-yr population study. Respir Med 110:58–65. https://doi.org/10.1016/j.rmed.2015.11.006

    Article  Google Scholar 

  32. Malig BJ, Green S, Basu R, Broadwin R (2013) Coarse particles and respiratory emergency department visits in California. Am J Epidemiol 178:58–69. https://doi.org/10.1093/aje/kws451

    Article  Google Scholar 

  33. Mann JK, Balmes JR, Bruckner TA, Mortimer KM, Margolis HG, Pratt B, Hammond SK, Lurmann FW, Tager IB (2010) Short-term effects of air pollution on wheeze in asthmatic children in Fresno, California. Environ Health Perspect 118:1497–1502. https://doi.org/10.1289/ehp.0901292

    Article  CAS  Google Scholar 

  34. Meng Y-Y, Rull RP, Wilhelm M, Lombardi C, Balmes J, Ritz B (2010) Outdoor air pollution and uncontrolled asthma in the San Joaquin Valley, California. J Epidemiol Community Health 64:142–147. https://doi.org/10.1136/jech.2009.083576

    Article  Google Scholar 

  35. Morgenstern V, Zutavern A, Cyrys J, Brockow I, Koletzko S, Krämer U, Behrendt H, Herbarth O, von Berg A, Bauer CP, Wichmann HE, Heinrich J, GINI Study Group; LISA Study Group (2008) Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med 177:1331–1337. https://doi.org/10.1164/rccm.200701-036OC

    Article  Google Scholar 

  36. Nieuwenhuijsen M, Paustenbach D, Duarte-Davidson R (2006) New developments in exposure assessment: the impact on the practice of health risk assessment and epidemiological studies. Environ Int 32:996–1009. https://doi.org/10.1016/j.envint.2006.06.015

    Article  CAS  Google Scholar 

  37. Nieuwenhuijsen MJ, Kruize H, Gidlow C, Andrusaityte S, Antó JM, Basagaña X, Cirach M, Dadvand P, Danileviciute A, Donaire-Gonzalez D, Garcia J, Jerrett M, Jones M, Julvez J, van Kempen E, van Kamp I, Maas J, Seto E, Smith G, Triguero M, Wendel-Vos W, Wright J, Zufferey J, van den Hazel PJ, Lawrence R, Grazuleviciene R (2014) Positive health effects of the natural outdoor environment in typical populations in different regions in Europe (PHENOTYPE): a study programme protocol. BMJ Open 4:e004951. https://doi.org/10.1136/bmjopen-2014-004951

    Article  Google Scholar 

  38. Park YM, Kwan MP (2017) Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored. Health Place 43:85–94. https://doi.org/10.1016/j.healthplace.2016.10.002

    Article  Google Scholar 

  39. Reis S, Seto E, Northcross A, Quinn NWT, Convertino M, Jones RL, Maier HR, Schlink U, Steinle S, Vieno M, Wimberly MC (2015) Integrating modelling and smart sensors for environmental and human health. Environ Model Softw 74:238–246. https://doi.org/10.1016/j.envsoft.2015.06.003

    Article  Google Scholar 

  40. Schultz AA, Schauer JJ, Malecki KM (2017) Allergic disease associations with regional and localized estimates of air pollution. Environ Res 155:77–85. https://doi.org/10.1016/j.envres.2017.01.039

    Article  CAS  Google Scholar 

  41. Selmi W, Weber C, Rivière E, Blond N, Mehdi L, Nowak D (2016) Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For Urban Gree 17:192–201. https://doi.org/10.1016/j.ufug.2016.04.010

    Article  Google Scholar 

  42. Semple S (2005) Assessing occupational and environmental exposure. Occup Med 55:419–424. https://doi.org/10.1093/occmed/kqi135

    Article  CAS  Google Scholar 

  43. Seto E, Matin E, Yang A, Yan P, Gravina R, Lin I, Wang C, Roy M, Shia V, Bajcsy R (2010) Opportunistic strategies for lightweight signal processing for body sensor networks. Acm International Conference Proceeding Series doi https://doi.org/10.1145/1839294.1839361

  44. Silva RA, Adelman Z, Fry MM, West JJ (2016) The impact of individual anthropogenic emissions sectors on the global burden of human mortality due to ambient air pollution. Environ Health Perspect 124:1776–1784. https://doi.org/10.1289/EHP177

    Article  Google Scholar 

  45. Skelly A, Dettori J, Brodt E (2012) Assessing bias: the importance of considering confounding. Evid Based Spine Care J 3:9–12. https://doi.org/10.1055/s-0031-1298595

    Article  Google Scholar 

  46. Spinazzè A, Cattaneo A, Peruzzo C, Cavallo DM (2014) Modeling population exposure to ultrafine particles in a major Italian urban area. Int J Environ Res Public Health 11:10641–10662. https://doi.org/10.3390/ijerph111010641

    Article  Google Scholar 

  47. Steinle S, Reis S, Sabel CE, Semple S, Twigg MM, Braban CF, Leeson SR, Heal MR, Harrison D, Lin C, Wu H (2015) Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments. Sci Total Environ 508:383–394. https://doi.org/10.1016/j.scitotenv.2014.12.003

    Article  CAS  Google Scholar 

  48. van den Berg M, Wendel-Vos W, van Poppel M, Kemper H, van Mechelen W, Maas J (2015) Health benefits of green spaces in the living environment: a systematic review of epidemiological studies. Urban For Urban Gree 14:806–816. https://doi.org/10.1016/j.ufug.2015.07.008

    Article  Google Scholar 

  49. Wang IJ, Tung TH, Tang CS, Zhao ZH (2016) Allergens, air pollutants, and childhood allergic diseases. Int J Hyg Environ Health 219:66–71. https://doi.org/10.1016/j.ijheh.2015.09.001

    Article  CAS  Google Scholar 

  50. WHO (World Health Organization) (2016) Preventing disease through healthy environments: a global assessment of the burden of disease from environmental risks. http://apps.who.int/iris/bitstream/handle/10665/204585/9789241565196_eng.pdf?sequence=1. Accessed 04 January 2019

  51. Wolch JR, Byrne J, Newell JP (2014) Urban green space, public health, and environmental justice: the challenge of making cities “just green enough.”. Landsc Urban Plan 125:234–244. https://doi.org/10.1016/j.landurbplan.2014.01.017

    Article  Google Scholar 

  52. Zuurbier M, Hoek G, Oldenwening M, Lenters V, Meliefste K, van den Hazel P, Brunekreef B (2010) Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect 118:783–789. https://doi.org/10.1289/ehp.0901622

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 282996 (ENV.2011.1.2.3-2) (Positive effects of natural environment for human health and well-being) Duration 1 January 2012–31 December 2015, and the grant of the Lithuanian Agency for Science Innovation and Technology on 23 September 2015, no. 31V-70.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Audrius Dėdelė.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval

Ethics approval was obtained for all aspects of the study by the Lithuanian Bioethics Committee, and informed consent was obtained from all participants.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dėdelė, A., Miškinytė, A. & Gražulevičienė, R. The impact of particulate matter on allergy risk among adults: integrated exposure assessment. Environ Sci Pollut Res 26, 10070–10082 (2019). https://doi.org/10.1007/s11356-019-04442-5

Download citation

Keywords

  • Particulate matter
  • PM10
  • Exposure assessment
  • Allergy risk
  • Microenvironment
  • GPS