Green sol–gel synthesis of novel nanoporous copper aluminosilicate for the eradication of pathogenic microbes in drinking water and wastewater treatment

Abstract

We used a green sol–gel synthesis method to fabricate a novel nanoporous copper aluminosilicate (CAS) material. Nanoporous CAS was characterized using X-ray powder diffraction (XRD), field emission transmission and scanning electron microscopies (FE-TEM/FE-SEM), Fourier transform infrared (FTIR) spectroscopy, and optical analyses. The CAS was also evaluated for use as a promising disinfectant for the inactivation of waterborne pathogens. The antimicrobial action and minimum inhibitory concentration (MIC) of this CAS disinfectant were determined against eight microorganisms (Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis, Candida albicans, and Aspergillus niger). An antimicrobial susceptibility testing of CAS was measured. Results of disc diffusion method pointed out that the diameters of the zone using well diffusion were wider than disc diffusion methods, and the findings also showed that the MIC of the CAS disinfectant against E. coli, S. enterica, and P. aeruginosa was 100 mg/L within 20 min of contact time. Meanwhile, the MIC of the CAS disinfectant was 100 mg/L within 40 min of contact time for the other strains. The efficacy of antimicrobial action (100%) reached within 20 to 40 min against all tested microbes. Herein, the antimicrobial susceptibility testing of CAS disinfectant showed no toxicity for human and bacterial cells. It can be concluded that nanoporous CAS is a promising, economically, and worthy weapon for water disinfection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Alghamdi H, Dakhane A, Alum A, Abbaszadegan M, Mobasher B, Neithalath N (2018) Synthesis and characterization of economical, multi-functional porous ceramics based on abundant aluminosilicates. Mater Des 152:10–21. https://doi.org/10.1016/j.matdes.2018.04.060

    Article  CAS  Google Scholar 

  2. American Public Health Association, American Water Works Association, Water Environment Federation (2012) Standard methods for the examination of water and wastewater, 22nd edn. Am Public Heal Assoc, Washingto, DC, USA ISBN 9780875532356

    Google Scholar 

  3. Bagchi B, Kar S, Dey SK, Bhandary S, Roy D, Mukhopadhyay TK, Das S, Nandy P (2013) In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloids Surf B Biointerfaces. 108:358–365. https://doi.org/10.1016/j.colsurfb.2013.03.019

    Article  CAS  Google Scholar 

  4. Bian N, Mayanovic RA, Benamara M (2018) Synthesis and characterization of Co3O4-MnxCo3-xO4Core-Shell nanoparticles. MRS Advances, In

    Google Scholar 

  5. Bogdanović U, Lazić V, Vodnik V, Budimir M, Marković Z, Dimitrijević S (2014) Copper nanoparticles with high antimicrobial activity. Mater Lett 128:75–78. https://doi.org/10.1016/j.matlet.2014.04.106

    Article  CAS  Google Scholar 

  6. Chaturvedi KS, Henderson JP (2014) Pathogenic adaptations to host-derived antibacterial copper. Front Cell Infect Microbiol 4. https://doi.org/10.3389/fcimb.2014.00003

  7. Craun MF, Craun GF, Calderon RL, Beach MJ (2006) Waterborne outbreaks reported in the United States. J Water Health 4:19–30. https://doi.org/10.2166/wh.2006.016

    Article  CAS  Google Scholar 

  8. Dankovich TA, Smith JA (2014) Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Res 63:245–251. https://doi.org/10.1016/j.watres.2014.06.022

    Article  CAS  Google Scholar 

  9. De Velasco-Maldonado PS, Hernández-Montoya V, Montes-Morán MA et al (2018) Surface modification of a natural zeolite by treatment with cold oxygen plasma: characterization and application in water treatment. Appl Surf Sci 434:1193–1199. https://doi.org/10.1016/j.apsusc.2017.11.023

    Article  CAS  Google Scholar 

  10. Dollwet HHA, Sorenson JRJ (1985) Historic uses of copper compounds in medicine. Trace Elem Med 2:80–87

  11. El Hotaby W, Sherif HHA, Hemdan BA et al (2017) Assessment of in situ-prepared polyvinylpyrrolidone-silver nanocomposite for antimicrobial applications. Acta Phys Pol A 131:1554–1560. https://doi.org/10.12693/APhysPolA.131.1554

    Article  Google Scholar 

  12. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  13. El Nahrawy AM (2015) Structural studies of sol gel prepared nano-crystalline silica zinc titanate ceramic. Intr J Advanc Engin Technol Computer Sci 2:15–18

  14. El Nahrawy A, AbouHammad AB (2016) A facile co-gelation sol gel route to synthesize cao: P2o5: Sio2 xerogel embedded in chitosan nanocomposite for bioapplications. Int J Pharm Tech Res 9:16–21

  15. El Nahrawy AM, Ali AI (2014) Influence of reaction conditions on sol-gel process producing SiO2 and SiO2 -P2O5 gel and glass. J Glas Ceram 04:42–47. https://doi.org/10.4236/njgc.2014.42006

  16. El Nahrawy AM, Kim YS, Ali AI (2016) Synthesis of hybrid chitosan/calcium aluminosilicate using a sol-gel method for optical applications. J Alloys Compd 676:432–439. https://doi.org/10.1016/j.jallcom.2016.03.210

  17. El Nahrawy AM, Moez AA, Saad AM (2018) Sol-gel preparation and spectroscopic properties of modified sodium silicate /Tartrazine dye nanocomposite. Silicon 10:2117–2122. https://doi.org/10.1007/s12633-017-9740-9

  18. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137

    Article  CAS  Google Scholar 

  19. Elwakeel KZ, El-Liethy MA, Ahmed MS et al (2018) Facile synthesis of magnetic disinfectant immobilized with silver ions for water pathogenic microorganism’s deactivation. Environ Sci Pollut Res 25:22797–22809. https://doi.org/10.1007/s11356-018-2071-6

    Article  CAS  Google Scholar 

  20. Esteban-Cubillo A, Pecharromán C, Aguilar E, et al (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. In: J Materials Sci 41(16):5208–5212. https://doi.org/10.1007/s10853-006-0432-x

  21. Farag AAM, Mansour AM, Ammar AH, Rafea MA, Farid AM (2012) Electrical conductivity, dielectric properties and optical absorption of organic based nanocrystalline sodium copper chlorophyllin for photodiode application. J Alloys Compd 513:404–413. https://doi.org/10.1016/j.jallcom.2011.10.058

    Article  CAS  Google Scholar 

  22. Fenwick A (2006) Waterborne infectious diseases - could they be consigned to history?. Science 313(5790):1077–1081. https://doi.org/10.1126/science.1127184

  23. Flokstra BR, Van Aken B, Schnoor JL (2008) Microtox® toxicity test: detoxification of TNT and RDX contaminated solutions by poplar tissue cultures. Chemosphere 71:1970–1976. https://doi.org/10.1016/j.chemosphere.2007.12.020

    Article  CAS  Google Scholar 

  24. Ford TE (1999) Microbiological safety of drinking water: United States and global perspectives. Environ Health Perspect 107:191. https://doi.org/10.2307/3434483

    Article  Google Scholar 

  25. Gaballah ST, El-Nazer HA, Abdel-Monem RA et al (2019) Synthesis of novel chitosan-PVC conjugates encompassing Ag nanoparticles as antibacterial polymers for biomedical applications. Int J Biol Macromol 121:707–717. https://doi.org/10.1016/j.ijbiomac.2018.10.085

    Article  CAS  Google Scholar 

  26. Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1547

    Article  CAS  Google Scholar 

  27. Guo X, Li W, Nakanishi K, Kanamori K, Zhu Y, Yang H (2013) Preparation of mullite monoliths with well-defined macropores and mesostructured skeletons via the sol-gel process accompanied by phase separation. J Eur Ceram Soc 33:1967–1974. https://doi.org/10.1016/j.jeurceramsoc.2013.02.018

    Article  CAS  Google Scholar 

  28. Gupta N, Pant P, Gupta C, Goel P, Jain A, Anand S, Pundir A (2018) Engineered magnetic nanoparticles as efficient sorbents for wastewater treatment: a review. Mater Res Innov 22:434–450. https://doi.org/10.1080/14328917.2017.1334846

    CAS  Article  Google Scholar 

  29. Hao OJ, Lin C-F, Fu-Tien J, Chien-Jen S (1995) A review of Microtox test and its applications. Toxicol Environ Chem 52:57–76

    Article  CAS  Google Scholar 

  30. Hellard ME, Sinclair MI, Forbes AB, Fairley CK (2001) A randomized, blinded, controlled trial investigating the gastrointestinal health effects of drinking water quality. Environ Health Perspect 109:773–778. https://doi.org/10.1289/ehp.01109773

    Article  CAS  Google Scholar 

  31. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535

    Article  CAS  Google Scholar 

  32. Hongquan Z, Yuhua Y, Youfa W, Shipu L (2003) Morphology and formation mechanism of hydroxyapatite whiskers from moderately acid solution. Mater Res 6:111–115

    Article  Google Scholar 

  33. Jamil TS, Mansor ES, Azab El-Liethy M (2015) Photocatalytic inactivation of E. Coli using nano-size bismuth oxyiodide photocatalysts under visible light. J Environ Chem Eng 3:2463–2471. https://doi.org/10.1016/j.jece.2015.09.017

    Article  CAS  Google Scholar 

  34. Jin R, Yang Y, Xing Y, Chen L, Song S, Jin R (2014) Facile synthesis and properties of hierarchical double-walled copper silicate hollow nanofibers assembled by nanotubes. ACS Nano 8:3664–3670. https://doi.org/10.1021/nn500275d

    Article  CAS  Google Scholar 

  35. Jin Y, Deng J, Liang J, Shan C, Tong M (2015) Efficient bacteria capture and inactivation by cetyltrimethylammonium bromide modified magnetic nanoparticles. Colloids Surf B Biointerfaces 136:659–665. https://doi.org/10.1016/j.colsurfb.2015.10.009

    Article  CAS  Google Scholar 

  36. Jones GL (1973) Bacterial growth kinetics: measurement and significance in the activated-sludge process. Water Res 7:1475–1492. https://doi.org/10.1016/0043-1354(73)90120-6

    Article  CAS  Google Scholar 

  37. Kajihara K (2013) Recent advances in sol-gel synthesis of monolithic silica and silica-based glasses. J Asian Ceram Soc 1(2):121–133. https://doi.org/10.1016/j.jascer.2013.04.002Get

  38. Karpanen TJ, Casey AL, Lambert PA, Cookson BD, Nightingale P, Miruszenko L, Elliott TSJ (2012) The antimicrobial efficacy of copper alloy furnishing in the clinical environment: a crossover study. Infect Control Hosp Epidemiol 33:3–9. https://doi.org/10.1086/663644

    Article  CAS  Google Scholar 

  39. Kaur K, Singh KJ, Anand V, Bhatia G, Singh S, Kaur H, Arora DS (2016) Magnesium and silver doped CaO–Na2O–SiO2–P2O5 bioceramic nanoparticles as implant materials. Ceram Int 42:12651–12662. https://doi.org/10.1016/j.ceramint.2016.05.001

    Article  CAS  Google Scholar 

  40. Kaur P, Singh KJ, Yadav AK, Sood H, Kaur S, Kaur R, Arora DS, Kaur S (2018) Preliminary investigation of the effect of doping of copper oxide in CaO-SiO2-P2O5-MgO bioactive composition for bone repair applications. Mater Sci Eng C 83:177–186. https://doi.org/10.1016/j.msec.2017.09.006

    Article  CAS  Google Scholar 

  41. Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A (2018) Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 123:505–526. https://doi.org/10.1016/j.micpath.2018.08.008

    Article  CAS  Google Scholar 

  42. Kim YH, Lee DK, Cha HG, Kim CW, Kang YC, Kang YS (2006a) Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J Phys Chem B 110:24923–24928. https://doi.org/10.1021/jp0656779

    Article  CAS  Google Scholar 

  43. Kim YH, Lee DK, Cha HG, Kim CW, Kang YC, Kang YS (2006b) Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J Phys Chem B 110:24923–24928. https://doi.org/10.1021/jp0656779

    Article  CAS  Google Scholar 

  44. Kim YH, Lee DK, Cha HG, Kim CW, Kang YS (2007) Synthesis and characterization of antibacterial Ag - SiO2nanocomposite. J Phys Chem C 111:3629–3635. https://doi.org/10.1021/jp068302w

    Article  CAS  Google Scholar 

  45. Köck R, Becker K, Cookson B, et al (2010) Methicillin-resistant staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Eurosurveillance 15(41):19688. https://doi.org/10.2807/ese.15.41.19688-en

  46. Kunz AN, Brook I (2010) Emerging resistant gram-negative aerobic bacilli in hospital-acquired infections. Chemotherapy 56:492–500. https://doi.org/10.1159/000321018

    Article  CAS  Google Scholar 

  47. Mahapatra O, Bhagat M, Gopalakrishnan C, Arunachalam KD (2008) Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci 3:185–193. https://doi.org/10.1080/17458080802395460

    Article  CAS  Google Scholar 

  48. Maniprasad P, Santra S (2012) Novel copper (cu) loaded core-shell silica nanoparticles with improved cu bioavailability: synthesis, characterization and study of antibacterial properties. J Biomed Nanotechnol 8:558–566. https://doi.org/10.1166/jbn.2012.1423

    Article  CAS  Google Scholar 

  49. Mansour AM, El-Menyawy EM, Mahmoud GM et al (2017a) Structural, optical and galvanomagnetic properties of nanocrystalline se 51.43 in 44.67 Pb 3.9 thin films. Mater Res Express 4:115903. https://doi.org/10.1088/2053-1591/aa95ee

    Article  CAS  Google Scholar 

  50. Mansour AM, El-Taweel FMAA, Abu El-Enein RANN, El-Menyawy EM (2017b) Structural, optical, electrical and photoelectrical properties of 2-Amino-4-(5-bromothiophen-2-yl)-5,6-dihydro-6-methyl-5-oxo-4H-pyrano[3,2-c] quinoline-3-carbonitrile films. J Electron Mater 46:1–8. https://doi.org/10.1007/s11664-017-5739-7

    Article  CAS  Google Scholar 

  51. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  52. Øye G, Glomm WR, Vrålstad T, Volden S, Magnusson H, Stöcker M, Sjöblom J (2006) Synthesis, functionalisation and characterisation of mesoporous materials and sol-gel glasses for applications in catalysis, adsorption and photonics. Adv Colloid Interf Sci 123-126:17–32

    Article  CAS  Google Scholar 

  53. PA W (2015) CLSI Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—tenth edition. CLSI document M07-A10. Clinical and Laboratory Standards Institute, Wayne, PA

  54. Pandey PK, Kass PH, Soupir ML, et al (2014) Contamination of water resources by pathogenic bacteria. AMB Express 4:51. https://doi.org/10.1186/s13568-014-0051-x

  55. Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, ul Hasan MM (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60:75–80. https://doi.org/10.1007/s13213-010-0015-6

    Article  CAS  Google Scholar 

  56. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009a) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590. https://doi.org/10.1016/j.ijantimicag.2008.12.004

    Article  CAS  Google Scholar 

  57. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009b) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590. https://doi.org/10.1016/j.ijantimicag.2008.12.004

    Article  CAS  Google Scholar 

  58. Reyes-Jara A, Cordero N, Aguirre J, Troncoso M, Figueroa G (2016) Antibacterial effect of copper on microorganisms isolated from bovine mastitis. Front Microbiol 7:1–10. https://doi.org/10.3389/fmicb.2016.00626

    Article  Google Scholar 

  59. Reynolds KA, Mena KD, Gerba CP (2008) Risk of waterborne illness via drinking water in the United States. Rev Environ Contam Toxicol 192:117–158. https://doi.org/10.1007/978-0-387-71724-1_4

  60. Rice LB (2007) Emerging issues in the management of infections caused by multidrug-resistant gram-negative bacteria. Cleve Clin J Med 74:S12. https://doi.org/10.3949/ccjm.74.Suppl_4.S12

    Article  Google Scholar 

  61. Sedlak DL, Von Gunten U (2011) The chlorine dilemma. Science 331(6013):42–43. https://doi.org/10.1126/science

  62. Sharma RK, Pant P (2009) Preconcentration and determination of trace metal ions from aqueous samples by newly developed gallic acid modified Amberlite XAD-16 chelating resin. J Hazard Mater 163:295–301. https://doi.org/10.1016/j.jhazmat.2008.06.120

    Article  CAS  Google Scholar 

  63. Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT - Food Sci Technol 43:573–583

    Article  CAS  Google Scholar 

  64. Singh A, Krishna V, Angerhofer A, Do B, MacDonald G, Moudgil B (2010) Copper coated silica nanoparticles for odor removal. Langmuir 26:15837–15844. https://doi.org/10.1021/la100793u

    Article  CAS  Google Scholar 

  65. Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in waste water treatment. Carbon Nanotub 3:417–433. https://doi.org/10.1016/j.matchemphys.2009.10.034

    CAS  Article  Google Scholar 

  66. Tripathi VS, Kandimalla VB, Ju H (2006) Preparation of ormosil and its applications in the immobilizing biomolecules. Sensors Actuators B Chem 114:1071–1082

  67. Trojanowicz M, Bojanowska-Czajka A, Bartosiewicz I, Kulisa K (2018) Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) – a review of recent advances. Chem Eng J 336:170–199

    Article  CAS  Google Scholar 

  68. UNCF (2014) The State of the World’s Children 2014 -Every Child Counts.United Nations Children’s Fund 2014.

  69. United States Environmental Protection Agency (2017) Clean Water Act Section 303(d): Impaired Waters and Total Maximum Daily Loads (TMDLs). In: United States Environ. Prot. Agency

  70. Usman MS, Zowalaty ME, El Shameli K et al (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 8:4467–4479

    Google Scholar 

  71. Vincent M, Hartemann P, Engels-Deutsch M (2016) Antimicrobial applications of copper. Int J Hyg Environ Health 219:585–591. https://doi.org/10.1016/j.ijheh.2016.06.003

    Article  CAS  Google Scholar 

  72. Wang Y, Lin F, Shang B, Peng B, Deng Z (2018) Self-template synthesis of nickel silicate and nickel silicate/nickel composite nanotubes and their applications in wastewater treatment. J Colloid Interface Sci 522:191–199. https://doi.org/10.1016/j.jcis.2018.03.044

    Article  CAS  Google Scholar 

  73. WHO (2012) Good health adds life to years - global brief for world health day 2012. World Heal Organ. https://doi.org/10.1017/CBO9781107415324.004

  74. WHO (2014) GLASS 2014 Report. Investing in water and sanitation: increasing access, reducing inequalities - UN-water global analysis and assessment of sanitation and drinking water. World Health Organization, Geneva

  75. Yoon KY, Hoon Byeon J, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575. https://doi.org/10.1016/j.scitotenv.2006.11.007

    Article  CAS  Google Scholar 

  76. Young M, Santra S (2014) Copper (Cu)-silica nanocomposite containing valence-engineered Cu: a new strategy for improving the antimicrobial efficacy of cu biocides. J Agric Food Chem 62:6043–6052. https://doi.org/10.1021/jf502350w

    Article  CAS  Google Scholar 

  77. Youssef AM, El-Nahrawy AM, Abou Hammad AB (2017) Sol-gel synthesis and characterizations of hybrid chitosan-PEG/calcium silicate nanocomposite modified with ZnO-NPs and (E102) for optical and antibacterial applications. Int J Biol Macromol 97:561–567. https://doi.org/10.1016/j.ijbiomac.2017.01.059

    Article  CAS  Google Scholar 

  78. Zazouli MA, Kalankesh LR (2017) Removal of precursors and disinfection byproducts (DBPs) by membrane filtration from water; a review. J Environ Heal Sci Eng 15(1):25. https://doi.org/10.1186/s40201-017-0285-z

  79. Zhan S, Yang Y, Shen Z, Shan J, Li Y, Yang S, Zhu D (2014) Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles. J Hazard Mater 274:115–123. https://doi.org/10.1016/j.jhazmat.2014.03.067

    Article  CAS  Google Scholar 

  80. Zhan G, Yec CC, Zeng HC (2015) Mesoporous bubble-like manganese silicate as a versatile platform for design and synthesis of nanostructured catalysts. Chem - A Eur J 21:1882–1887. https://doi.org/10.1002/chem.201405697

    Article  CAS  Google Scholar 

  81. Zhang S, Fu R, Dingcai W et al (2004) Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels. Carbon N Y 42:3209–3216. https://doi.org/10.1016/j.carbon.2004.08.004

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the National Research Centre (NRC), Egypt, for their financial support and providing the equipment required.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bahaa Ahmed Hemdan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hemdan, B.A., El Nahrawy, A.M., Mansour, AF.M. et al. Green sol–gel synthesis of novel nanoporous copper aluminosilicate for the eradication of pathogenic microbes in drinking water and wastewater treatment. Environ Sci Pollut Res 26, 9508–9523 (2019). https://doi.org/10.1007/s11356-019-04431-8

Download citation

Keywords

  • Green sol–gel
  • Nanoporous CAS
  • Pathogenic microbes
  • Disinfection
  • Water purification