Exploring inter-species sensitivity to a model hydrocarbon, 2-Methylnaphtalene, using a process-based model

Abstract

We compared inter-species sensitivity to a model narcotic compound, 2-Methylnaphthalene, to test if taxonomical relatedness, feeding guilds, and trophic level govern species sensitivities on species distributed in different regions. We fitted a toxicokinetic-toxicodynamic model to survival patterns over time for 26 species using new and raw data from the literature. Species sensitivity distributions provided little insight into understanding patterns in inter-species sensitivity. The range of no-effect concentrations (NEC) obtained for 26 species showed little variation (mean 0.0081 mM; SD 0.009). Results suggest that the NEC alone does not explain the complexity of the species tolerances. The dominant rate constant and the derived time to observe an effect (t0), a function of concentration, might provide the means for depicting patterns in sensitivity and better ecotoxicological testing. When comparing the t0 functions, we observed that Arctic species have shorter time frames to start showing effects. Mollusks and second trophic level species took longer to build up a lethal body burden than the rest. Coupling our results with fate and transport models would allow forecasting narcotic compounds toxicity in time and thus improve risk assessment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anderson MJ (2001) A new method for non parametric multivariate analysis of variance. Austral Ecol 26(2001):32–46

    Google Scholar 

  2. Ashauer R, Boxall ABA, Brown CD (2006) New ecotoxicological model to simulate survival of aquatic invertebrates after exposure to fluctuating and sequential pulses of pesticides. Environ Sci Technol 41:1480–1486

    Article  CAS  Google Scholar 

  3. Ashauer R, O’Connor I, Hintermeister A, Escher BI (2015) Death dilemma and organism recovery in ecotoxicology. Environ Sci Technol 49(16):10136–10146

    Article  CAS  Google Scholar 

  4. Ashauer R, Albert C, Augustine S, Cedergreen N, Charles S, Ducrot V, Focks A, Gabsi F, Gergs A, Goussen B et al (2016) Modelling survival: exposure pattern, species sensitivity and uncertainty. Sci Rep 6(July):29178

    Article  CAS  Google Scholar 

  5. Baas J, Jager T, Kooijman SALM (2009) A model to analyze effects of complex mixtures on survival. Ecotoxicol Environ Saf 72(3):669–676

    Article  CAS  Google Scholar 

  6. Baas J, Jager T, Kooijman B (2010) Understanding toxicity as processes in time. Sci Total Environ 408(18):3735–3739

    Article  CAS  Google Scholar 

  7. Baas J, Kooijman SALM (2015) Sensitivity of animals to chemical compounds links to metabolic rate. Ecotoxicology 24(3):657–663

    Article  CAS  Google Scholar 

  8. Baas J, Spurgeon D, Broerse M (2015) A simple mechanistic model to interpret the effects of narcotics. SAR QSAR Environ Res 26(3):165–180

    Article  CAS  Google Scholar 

  9. Bedaux JJM, Kooijman SALM (1994) Statistical analysis of bioassays, based on hazard modeling. Environ Ecol Stat 1:303–314

    Article  Google Scholar 

  10. Cardoso FD, Dauner ALL, Martins CC (2016) A critical and comparative appraisal of polycyclic aromatic hydrocarbons in sediments and suspended particulate material from a large South American subtropical estuary. Environ Pollut 214:219–229

    Article  CAS  Google Scholar 

  11. de Abreu-Mota MA, de Moura Barboza CA, Bícego MC, Martins CC (2014) Sedimentary biomarkers along a contamination gradient in a human-impacted sub-estuary in Southern Brazil: a multi-parameter approach based on spatial and seasonal variability. Chemosphere 103:156–163

    Article  CAS  Google Scholar 

  12. de Hoop, L.; Schipper, A. M.; Huijbregts, M. A. J.; Olsen, G. H.; Smit, M. G. D.; Hendriks, A. J. Sensitivity of polar and temperate marine organisms to oil components. Environ Sci Technol 2011, 45:9017-9023. 1–28

  13. Delignette-Muller ML, Dutang C (2014) Fitdistrplus: an R package for fitting distributions. J Stat Softw 65(4):1–34

    Google Scholar 

  14. Dutang C, Goulet V, Mathieu P (2008) Actuar: an R package for actuarial science. J Stat Softw 25(7):38

    Google Scholar 

  15. EFSA (2013) Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA J 11:1–268

    Google Scholar 

  16. Falk-Petersen I-B, Saethre L, Lonning S (1982) Toxic effects of naphthalene and methylnaphthalenes on marine plankton organisms. SARSIA 67:171–178

    Article  CAS  Google Scholar 

  17. Jager T (2014) Reconsidering sufficient and optimal test design in acute toxicity testing. Ecotoxicology 23(1):38–44

    Article  CAS  Google Scholar 

  18. Jager T (2016) Predicting environmental risk: a road map for the future. J Toxicol Environ Heal Part A 79(13–15):572–584

    Article  CAS  Google Scholar 

  19. Jager T. Making sense of chemical stress: applications of dynamic energy budget theory in ecotoxicology and stress ecology (2017). Version 1.3, Leanpub: https://leanpub.com/debtox_book

  20. Jager T, Kooijman SALM (2009) A biology-based approach for quantitative structure-activity relationships (QSARs) in ecotoxicity. Ecotoxicology 18(2):187–196

    Article  CAS  Google Scholar 

  21. Jager T, Albert C, Preuss TG, Ashauer R (2011) General unified threshold model of survival - a toxicokinetic-toxicodynamic framework for ecotoxicology. Environ Sci Technol 45(7):2529–2540

    Article  CAS  Google Scholar 

  22. Jager T, Øverjordet IB, Nepstad R, Hanse BH (2017) Dynamic links between lipid storage, toxicokinetics and mortality in a marine copepod exposed to dimethylnaphthalene. Environ Sci Technol 51(13):7707–7713

    Article  CAS  Google Scholar 

  23. Jager T and Ashauer R (2018). Modelling survival under chemical stress. A comprehensive guide to the GUTS Framework Version 1.0, Leanpub: https://leanpub.com/ guts_book

  24. Kennedy CJ (1990) Toxicokinetic studies of chlorinated phenols and polycyclic aromatic hydrocarbons in rainbow trout (Oncorhynchus mykiss), Simon Frase University

  25. Klok C, Nordtug T, Tamis JE (2014) Estimating the impact of petroleum substances on survival in early life stages of cod (Gadus morhua) using the Dynamic Energy Budget theory. Mar Environ Res 101(1):60–68

    Article  CAS  Google Scholar 

  26. Kon Kam King G, Delignette-Muller ML, Kefford BJ, Piscart C, Charles S (2015) Constructing time-resolved species sensitivity distributions using a hierarchical toxico-dynamic model. Environ Sci Technol 49(20):12465–12473

    Article  CAS  Google Scholar 

  27. Kooijman SALM, Bedaux JJM (1996) The analysis of aquatic toxicity data. VU University Press, Amsterdam, Netherlands

    Google Scholar 

  28. Kooijman SALM (1996) An alternative for NOEC exists, but the standard model has to be abandoned first. Oikos 75:310–316

    Article  Google Scholar 

  29. Kooijman SALM (2010) Dynamic Energy Budget theory for metabolic organisation: summary of concepts of the third edition, Water

  30. Kwok KWH, Leung KMY, Lui GSG, Chu SVKH, Lam PKS, Morritt D, Maltby L, Brock TCM, Van den Brink PJ, Warne MSJ et al (2007) Comparison of tropical and temperate freshwater animal species’ acute sensitivities to chemicals: implications for deriving safe extrapolation factors. Integr Environ Assess Manag 3(1):49–67

    Article  CAS  Google Scholar 

  31. Leppanen M (1995) The role of feeding behaviour in bioaccumulation of organic chemicals in benthic organisms. Ann Zool Fenn 32(3):247–255

    Google Scholar 

  32. Moen FE, Svensen E (2004) Marine fish and invertebrates of Northern Europe, First edit.

  33. Nahrgang J, Brooks SJ, Evenset A, Camus L, Jonsson M, Smith TJ, Lukina J, Frantzen M, Giarratano E, Renaud PE (2013) Seasonal variation in biomarkers in blue mussel (Mytilus edulis), Icelandic scallop (Chlamys islandica) and Atlantic cod (Gadus morhua): implications for environmental monitoring in the Barents Sea. Aquat Toxicol 127(9037):21–35

    Article  CAS  Google Scholar 

  34. Neff JM. (2004) Bioaccumulation in marine organisms. Effect of contaminants from oil well produced water, Second edi.; Elsevier

  35. Nyman AM, Schirmer K, Ashauer R (2014) Importance of toxicokinetics for interspecies variation in sensitivity to chemicals. Environ Sci Technol 48(10):5946–5954

    Article  CAS  Google Scholar 

  36. OECD. (2003) Draft Guidance Document for on the Statistical Analysis of Ecotoxicity Data Environment. ISO TC 147/SC 5 N 18, ISO/WD, . Publishing, Paris. http://www.oecd.org/chemicalsafety/testing/2956192.pdf

  37. OECD. (2014) Current Approaches in the Statistical Analysis of Ecotoxicity Data: A guidance to application (annexes to this publication exist as a separate document), OECD series on testing and assessment, no. 54, OECD Publishing, Paris, https://doi.org/10.1787/9789264085275-en

  38. Olsen GH, Klok C, Hendriks AJ, Geraudie P, De Hoop L, De Laender F, Farmen E, Grøsvik BE, Hansen BH, Hjorth M et al (2013) Toxicity data for modeling impacts of oil components in an Arctic ecosystem. Mar Environ Res 90:9–17

    Article  CAS  Google Scholar 

  39. Olsen GH, Smit MGD, Carroll J, Jæger I, Smith T, Camus L (2011) Arctic versus temperate comparison of risk assessment metrics for 2-methyl-naphthalene. Mar Environ Res 72(4):179–187

    Article  CAS  Google Scholar 

  40. Posthuma L, Suter II GW, and Traas TP. (2010) Species sensitivity distributions in ecotoxicology. CRC press

  41. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  42. Renaud PE, Tessmann M, Evenset A, Christensen GN (2011) Benthic food-web structure of an Arctic fjord (Kongsfjorden, Svalbard). Mar Biol Res 7:13–26

    Article  Google Scholar 

  43. Renaud PE, Løkken TS, Jørgensen LL, Berge J, Johnson BJ (2015) Macroalgal detritus and food-web subsidies along an Arctic fjord depth-gradient. Front Mar Sci 2:31

    Article  Google Scholar 

  44. Saethre L, Falk-petersen I-B, Sydnes LK, Lønning S, Naley AM (1984) Toxicity and chemical reactivity of naphthalene and methylnaphthalenes. Aquat Toxicol 5:291–396

    Article  CAS  Google Scholar 

  45. Sandrini-Neto L, Pereira L, Martins CC, Silva de Assis HC, Camus L, Lana PC (2016) Antioxidant responses in estuarine invertebrates exposed to repeated oil spills: effects of frequency and dosage in a field manipulative experiment. Aquat Toxicol 177:237–249

    Article  CAS  Google Scholar 

  46. Sardi AE, Sandrini-Neto L, da S Pereira L, Silva de Assis H, Martins CC, Lana PC, Camus L (2016a) Oxidative stress in two tropical species after exposure to diesel oil. Environ Sci Pollut Res 23(20):20952–20962

    Article  CAS  Google Scholar 

  47. Sardi AE, Renaud PE, da Cunha Lana P, Camus L (2016b) Baseline levels of oxidative stress biomarkers in species from a subtropical estuarine system (Paranaguá Bay, southern Brazil). Mar Pollut Bull 113(1–2):496–508

    Article  CAS  Google Scholar 

  48. Tamelander T, Renaud PE, Hop H, Carroll ML, Ambrose WG, Hobson KA (2006) Trophic relationships and pelagic-benthic coupling during summer in the Barents Sea Marginal Ice Zone, revealed by stable carbon and nitrogen isotope measurements. Mar Ecol Prog Ser 310:33–46

    Article  CAS  Google Scholar 

  49. US Department of Energy. International energy statistics: Total primary energy consumption. Data retrieved, January 2017 http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2

  50. Wang Z, Kwok KWH, Lui GCS, Zhou GJ, Lee JS, Lam MHW, Leung KMY (2014) The difference between temperate and tropical saltwater species’ acute sensitivity to chemicals is relatively small. Chemosphere 105:31–43

    Article  CAS  Google Scholar 

  51. Wheeler JR, Grist EPM, Leung KMY, Morritt D, Crane M (2002) Species sensitivity distributions: data and model choice. Mar Pollut Bull 45(1–12):192–202

    Article  CAS  Google Scholar 

  52. Wickham H (2009) ggplot2: elegant graphics for data analysis; Springer, Ed.; Springer, New York

Download references

Acknowledgments

We wish to thank Gisele C. Morais for her valuable help during the sampling and conduction of the experiments of subtropical species. We also thank Thayanne Lima for helping during the sampling of subtropical species, and Carl Ballantine for providing raw data sets for estimating weights and lengths of Arctic species. Finally, we would like to thank the anonymous reviewers for their comments, which helped to improve the quality of our manuscript.

Funding

The Norwegian Research Council funded this study through the “Latin Amerika” research program attributed to Akvaplan-niva AS under the Project number 227180/H30.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adriana E. Sardi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Electronic supplementary material

• Model equations and explanations of how they are derived.

• Information on sampling locations, treatments, replicates and the total number of individuals used per toxicity test.

• Survival data over time, model fits, likelihood profiles and biological information of each of the studied species.

• Comparative figures for bw and kd among classes and geographical regions.

• Comparative table of time to effect estimated for a fixed concentration and using temperature corrected parameters.

ESM 1

(PDF 19163 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sardi, A.E., Augustine, S., Olsen, G.H. et al. Exploring inter-species sensitivity to a model hydrocarbon, 2-Methylnaphtalene, using a process-based model. Environ Sci Pollut Res 26, 11355–11370 (2019). https://doi.org/10.1007/s11356-019-04423-8

Download citation

Keywords

  • No effect concentration
  • Narcotics
  • Survival
  • SSD
  • GUTS
  • Toxicokinetics
  • Toxicodynamics