Skip to main content
Log in

Effects of cerium oxide nanoparticles on bacterial growth and behaviors: induction of biofilm formation and stress response

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this paper, the effects of cerium oxide nanoparticles (CeO2 NPs) on the group bacterial behaviors were elaborated. After 36-h cultivation, the biofilm biomass was enhanced by the sub-lethal concentrations of 0.5 and 2 mg/L CeO2 NP exposure. Meanwhile, the promoted production of total amino acids in microbes further resulted in the increased surface hydrophobicity and percentage aggregation. To resist the CeO2 NPs stress, the biofilm exhibited a double-layer microstructure, with the protein (PRO) and living cells occupying the bottom, the polysaccharide (PS), and dead cells dominating the top. The bacterial diversity was highly suppressed and Citrobacter and Pseudomonas from the phylum of γ-Proteobacteria strongly dominated the biofilm, indicating the selective and enriched effects of CeO2 NPs on resistant bacteria. The stimulated inherent resistance of biofilm was reflected by the reduced adenosine triphosphate (ATP) content after 4 h exposure. The increased levels of reactive oxygen species (ROS) in the treatments of 8 h CeO2 NP exposure led to the upregulated quorum sensing signals of acylated homoserine lactone (AHL) and autoinducer 2 (AI-2), beneficial to mitigating the environmental disturbance of CeO2 NPs. These results provide evidences for the accelerating effects of CeO2 NPs on biofilm formation through oxidative stress, which expand the understanding of the ecological effects of CeO2 NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424

    Article  CAS  Google Scholar 

  • Blaser SA, Scheringer M, Macleod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409

    Article  CAS  Google Scholar 

  • Bo F, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758

    Article  Google Scholar 

  • Cáp M, Váchová L, Palková Z (2012) Reactive oxygen species in the signaling and adaptation of multicellular microbial communities. Oxidative Med Cell Longev 11:976753

    Google Scholar 

  • Cappitelli F, Principi P, Sorlini C (2006) Biodeterioration of modern materials in contemporary collections: can biotechnology help? Trends Biotechnol 24:350–354

    Article  CAS  Google Scholar 

  • Chen MY, Duujong L, Yang Z, Peng XF, Lai JY (2006) Fluorescent staining for study of extracellular polymeric substances in membrane biofouling layers. Environ Sci Technol 40:6642–6646

    Article  CAS  Google Scholar 

  • Chen MY, Lee DJ, Tay JH, Show KY (2007) Staining of extracellular polymeric substances and cells in bioaggregates. Appl Microbiol Biotechnol 75:467–474

    Article  CAS  Google Scholar 

  • Collin B, Oostveen E, Tsyusko OV, Unrine JM (2014) Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ Sci Technol 48:1280–1289

    Article  CAS  Google Scholar 

  • Dou XY, He LN, Yang ZZ, Wang JL (2010) Reaction of N-acylhomoserine lactones with hydroxyl radicals: rates, products, and effects on signaling activity. Environ Sci Technol 44:7465–7469

    Article  CAS  Google Scholar 

  • Field TR, White A, Elborn JS, Tunney MM (2005) Effect of oxygen limitation on the in vitro antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa grown planktonically and as biofilms. Eur J Clin Microbiol 24:677–687

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  Google Scholar 

  • Fleurke SR, Formentin, Külske (1988) Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. J Bacteriol 170:2027–2030

    Article  Google Scholar 

  • Gambino M, Cappitelli F (2016) Mini-review: biofilm responses to oxidative stress. Biofouling 32:167–178

    Article  CAS  Google Scholar 

  • García A, Delgado L, Torà JA, Casals E, González E, Puntes V, Font X, Carrera J, Sánchez A (2012) Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J Hazard Mater 199:64–72

    Article  CAS  Google Scholar 

  • Goh SY, Khan SA, Tee KK, Kasim NHA, Yin WF, Chan KG (2016) Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque. Sci Rep 6:20702

    Article  CAS  Google Scholar 

  • Golowczyc MA, Mobili P, Garrote GL, De LASM, Abraham AG, De Antoni GL (2009) Interaction between lactobacillus kefir and Saccharomyces lipolytica isolated from kefir grains: evidence for lectin-like activity of bacterial surface proteins. J Dairy Res 76:111–116

    Article  CAS  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  CAS  Google Scholar 

  • Green J, Paget MS (2004) Bacterial redox sensors. Nat Rev Microbiol 2:954–966

    Article  CAS  Google Scholar 

  • Hassett DJ, Ma JF, Elkins JG, Mcdermott TR, Ochsner UA, West SE, Huang CT, Fredericks J, Burnett S, Stewart PS (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093

    Article  CAS  Google Scholar 

  • Hou X, Liu S, Zhang Z (2015a) Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge. Water Res 75:51–62

    Article  CAS  Google Scholar 

  • Hou J, You G, Xu Y, Wang C, Wang P, Miao L, Ao Y, Li Y, Lv B (2015b) Effects of CeO2 nanoparticles on biological nitrogen removal in a sequencing batch biofilm reactor and mechanism of toxicity. Bioresour Technol 191:73–78

    Article  CAS  Google Scholar 

  • Hou J, You G, Xu Y, Wang C, Wang P, Miao L, Li Y, Ao Y, Lv B, Yang Y (2016) Long-term effects of CuO nanoparticles on the surface physicochemical properties of biofilms in a sequencing batch biofilm reactor. Appl Microbiol Biotechnol 100:1–11

    Article  CAS  Google Scholar 

  • Hou L, Zhou Q, Wu Q, Gu Q, Sun M, Zhang J (2017) Spatiotemporal changes in bacterial community and microbial activity in a full-scale drinking water treatment plant. Sci Total Environ 625:449–459

    Article  CAS  Google Scholar 

  • Hu X, Liu X, Yang X, Guo F, Su X, Chen Y (2018) Acute and chronic responses of macrophyte and microorganisms in constructed wetlands to cerium dioxide nanoparticles: implications for wastewater treatment. Chem Eng J 348:35–45

    Article  CAS  Google Scholar 

  • Joelsson A, Kan B, Zhu J (2007) Quorum sensing enhances the stress response in Vibrio cholerae. Appl Environ Microbiol 73:3742–3746

    Article  CAS  Google Scholar 

  • Kaldalu N, Mei R, Lewis K (2004) Killing by ampicillin and ofloxacin induces overlapping changes in Escherichia coli transcription profile. Antimicrob Agents Chemother 48:890–896

    Article  CAS  Google Scholar 

  • Koetsem FV, Verstraete S, Meeren PVD, Laing GD (2015) Stability of engineered nanomaterials in complex aqueous matrices: settling behaviour of CeO2 nanoparticles in natural surface waters. Environ Res 142:207–214

    Article  CAS  Google Scholar 

  • Lalucque H, Silar P (2003) NADPH oxidase: an enzyme for multicellularity? Trends Microbiol 11:9–12

    Article  CAS  Google Scholar 

  • Lam H, Oh DC, Cava F, Takacs CN, Clardy J, Pedro MAD, Waldor MK (2009) D-amino acids govern stationary phase cell wall re-modeling in bacteria. Science 325:1552–1555

    Article  CAS  Google Scholar 

  • Lazareva A, Keller AA (2014) Estimating potential life cycle releases of engineered nanomaterials from wastewater treatment plants. ACS Sustain Chem Eng 2:1656–1665

    Article  CAS  Google Scholar 

  • Maynard AD (2016) Nanotechnology: assessing the risks. Nano Today 1:22–33

    Article  Google Scholar 

  • Miyaoka Y, Haishima K, Takagi M, Haishima H, Jin A, Yamada Y (2010) Lack of CbrB in Pseudomonas putida affects not only amino acids metabolism but also different stress responses and biofilm development. Environ Microbiol 12:1748–1761

    Article  CAS  Google Scholar 

  • Molin S, Tolkernielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    Article  CAS  Google Scholar 

  • Nakao R, Ramstedt M, Sun NW, Uhlin BE (2012) Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PLoS One 7:e51241

    Article  CAS  Google Scholar 

  • Nguyen D, Visvanathan C, Jacob P, Jegatheesan V (2015) Effects of nano cerium (IV) oxide and zinc oxide particles on biogas production. Int Biodeterior Biodegrad 102:165–171

    Article  CAS  Google Scholar 

  • Palmer J, Flint S, Brooks J (2007) Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 34:577–588

    Article  CAS  Google Scholar 

  • Pontes MH, Babst M, Lochhead R, Oakeson K, Smith K, Dale C (2008) Quorum sensing primes the oxidative stress response in the insect endosymbiont, Sodalis glossinidius. Plos One 3:e3541

    Article  CAS  Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. CSH Perspect Med 2:705–709

    Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  CAS  Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Jerôme Rose MAA, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156

    Article  CAS  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    Article  CAS  Google Scholar 

  • Tou F, Yi Y, Feng J, Niu Z, Hui P, Qin Y, Guo X, Meng XZ, Min L, Hochella MF (2017) Environmental risk implications of metals in sludges from waste water treatment plants: the discovery of vast stores of metal-containing nanoparticles. Environ Sci Technol 51:4831–4840

    Article  CAS  Google Scholar 

  • Tuinier R, van Casteren WH, Looijesteijn PJ, Schols HA, Voragen AG, Zoon P (2015) Effects of structural modifications on some physical characteristics of exopolysaccharides from Lactococcus lactis. Biopolymers 59:160–166

    Article  Google Scholar 

  • Uzureau S, Lemaire J, Delaive E, Dieu M, Gaigneaux A, Raes M, Bolle XD, Letesson JJ (2010) Global analysis of quorum sensing targets in the intracellular pathogen Brucella melitensis 16 M. J Proteome Res 9:3200–3217

    Article  CAS  Google Scholar 

  • Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168

    Article  CAS  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  Google Scholar 

  • Wang S, Gao M, Li Z, She Z, Wu J, Dong Z, Liang G, Zhao Y, Feng G, Wang X (2016) Performance evaluation, microbial enzymatic activity and microbial community of a sequencing batch reactor under long-term exposure to cerium dioxide nanoparticles. Bioresour Technol 220:262–270

    Article  CAS  Google Scholar 

  • Wang P, You G, Hou J, Wang C, Xu Y, Miao L, Feng T, Zhang F (2018) Responses of wastewater biofilms to chronic CeO2 nanoparticles exposure: structural, physicochemical and microbial properties and potential mechanism. Water Res 133:208–217

    Article  CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Jones KL, Jr HM, Di GR, Casman E, Bernhardt ES (2009) Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ Sci Technol 43:6458–6462

    Article  CAS  Google Scholar 

  • Xu Y, Wang C, Hou J, Wang P, You G, Miao L, Lv B, Yang Y (2016) Influence of CeO2 NPs on biological phosphorus removal and bacterial community shifts in a sequencing batch biofilm reactor with the differential effects of molecular oxygen. Environ Res 151:21–29

    Article  CAS  Google Scholar 

  • Xu Y, Wang C, Hou J, Wang P, You G, Miao L, Lv B, Yang Y (2017) Effects of cerium oxide nanoparticles on the species and distribution of phosphorus in enhanced phosphorus removal sequencing batch biofilm reactor. Bioresour Technol 227:393–397

    Article  CAS  Google Scholar 

  • Yang L, Hu Y, Liu Y, Zhang J, Ulstrup J, Molin S (2011) Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ Microbiol 13:1705–1717

    Article  CAS  Google Scholar 

  • You G, Hou J, Xu Y, Wang C, Wang P, Miao L, Ao Y, Li Y, Lv B (2015) Effects of CeO2 nanoparticles on production and physicochemical characteristics of extracellular polymeric substances in biofilms in sequencing batch biofilm reactor. Bioresour Technol 194:91–98

    Article  CAS  Google Scholar 

  • Zhang H, He X, Zhang Z, Zhang P, Li Y, Ma Y, Kuang Y, Zhao Y, Chai Z (2011) Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol 45:3725–3730

    Article  CAS  Google Scholar 

  • Zimmermann A, Bauer MA, Kroemer G, Madeo F, Carmona-Gutierrez D (2014) When less is more: hormesis against stress and disease. Microbial Cell 1:150–153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the grants from the projects supported by the National Natural Science Funds for Excellent Young Scholar (No.51722902); the National Natural Science Funds for Creative Research Groups of China (No.51421006); the Key Program of National Natural Science Foundation of China (No. 91647206); the Outstanding Youth Fund of Natural Science Foundation of Jiangsu, China (BK20160038); the Fundamental Research Funds for the Central Universities (2018B671X14); and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0636) and PAPD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hou.

Additional information

Responsible editor: Diane Purchase

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 22339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wang, C., Hou, J. et al. Effects of cerium oxide nanoparticles on bacterial growth and behaviors: induction of biofilm formation and stress response. Environ Sci Pollut Res 26, 9293–9304 (2019). https://doi.org/10.1007/s11356-019-04340-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04340-w

Keywords