Abstract
Ephedra alata, known as a medicinal plant in China, was used in this study as aqueous extract from aerial parts, for diabetes mellitus treatment. This study was carried out on two parts, in vitro, we tested the effect of the studied extract on the inhibition of α-glucosidase and α-amylase activities, and in vivo on Wistar male rats receiving alloxan intraperitoneally at a rate of 125 mg/kg. Extract (100, 200, and 300 mg/kg of body weight) was administrated for 28 days by oral gavage. Blood glucose, amylase, lipase, and lipid profile level were determined. Oxidative stress was evaluated by enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and by estimation of lipid peroxidation and protein carbonyl (PC) level. Histopathological changes in pancreas were investigated under photonic microscopy using immunohistochemical procedure. Our findings showed that aqueous extract inhibited in vitro both α-glucosidase and α-amylase activities and its use in vivo at 300 mg/kg of body weight restored pancreas weight and weight gain, ameliorated significantly (p ˂ 0.05) biochemical parameters; it prevented the increase in lipid and protein oxidation and the decrease in enzymatic and non-enzymatic defense system. Histological study of treated animals showed a comparable healed regeneration of beta cells.
This is a preview of subscription content,
to check access.



References
Abourashed EA, El-alfy AT, Khan IA, Walker L (2003) Ephedra in perspective – a current review. 712:703–712
Adler G, Kern H (1975) Regulation of exocrine pancreatic secretory process by insulin in vivo. Horm Metab Res 7:290–296. https://doi.org/10.1055/s-0028-1093717
Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3
Ahmed MF, Kazim SM, Ghori SS et al (2010) Antidiabetic activity of Vinca rosea extracts in alloxan-induced diabetic rats. Int J Endocrinol 2010. https://doi.org/10.1155/2010/841090
Akuyam SA, Isah HS, Ogala WN (2007) Evaluation of serum lipid profile of under-five Nigerian children. Ann Afr Med 6:119–123. https://doi.org/10.4103/1596-3519.55722
Al-douri NA (2000) A survey of medicinal plants and their traditional uses. Pharm Biol 38:74–79
Al-Khalil S, Alkofahi A, El-Eisawi D, Al-Shibib A (1998) Transtorine, a new quinoline alkaloid from Ephedra transitoria. J Nat Prod 61:262–263. https://doi.org/10.1021/np9702998
Al-Qarawi AA, Abd Allah EF, Hashem A (2012) Effect of Ephedra Alata on nucleic acids and nitrogen. Pak J Bot 44:425–428
Andallu B, Varadacharyulu NC (2003) Antioxidant role of mulberry (Morus indica L. cv. Anantha) leaves in streptozotocin-diabetic rats. Clin Chim Acta 338:3–10
Anwar MM, Meki A-RMA (2003) Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comp Biochem Physiol A Mol Integr Physiol 135:539–547
Bargnoux A-S, Morena M, Badiou S et al (2009) Stress carbonylé et modifications oxydatives des protéines au cours de l’insuffisance rénale chronique Carbonyl stress and oxidatively modified proteins in chronic renal failure. Ann Biol Clin 67:153–158. https://doi.org/10.1684/abc.2009.0295
Barouki R (2006) Stress oxydant et vieillissement. Méd Sci 22:266–272. https://doi.org/10.1051/medsci/2006223266
Bell RH, Hye RJ (1983) Animal models of diabetes mellitus: physiology and pathology. J Surg Res 35:433–460. https://doi.org/10.1016/0022-4804(83)90034-3
Bopanna KN, Gadjils KJ, Boloraman ER, Rathore S (1997) Antidiabetic and antihyperlipidemic effect of neem seed kernel puder on alloxan diabetic rabbits. Indian J Pharmacol 29:162–167
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Breuer HWM (2003) Review of acarbose therapeutic strategies in the long-term treatment and in the prevention of type 2 diabetes. Int J Clin Pharmacol Ther 41:421–440
Buege AJ, Aust DS (1978) Microsomal lipid peroxidation
Cakatay U (2005) Protein oxidation parameters in type 2 diabetic patients with good and poor glycaemic control. Diabetes Metab 31:551–557
Chahdoura H, Adouni K, Khlifi A et al (2017) Hepatoprotective effect of Opuntia microdasys (Lehm.) Pfeiff flowers against diabetes type II induced in rats. Biomed Pharmacother 94:79–87. https://doi.org/10.1016/j.biopha.2017.07.093
Chaieb, M., Boukhris M (1998) Flore succincte et illustrée des zones arides etsahariennes de Tunisie. In: Association pour la Protection de la Nature et del’Environnement L’or du temps, Sfax
Culotta VC (2001) Superoxide dismutase, oxidative stress, and cell metabolism. Curr Top Cell Regul 36:117–132. https://doi.org/10.1016/S0070-2137(01)80005-4
Cunha WR, Arantes GM, Ferreira DS et al (2008) Hypoglicemic effect of Leandra lacunosa in normal and alloxan-induced diabetic rats. Fitoterapia 79:356–360. https://doi.org/10.1016/j.fitote.2008.04.002
Dalle-Donne I, Rossi R, Colombo R et al (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623. https://doi.org/10.1373/clinchem.2005.061408
Das J, Vasan V, Sil PC (2012) Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol Appl Pharmacol 258:296–308. https://doi.org/10.1016/j.taap.2011.11.009
DeFronzo RA, Abdul-Ghani M (2011) Type 2 diabetes can be prevented with early pharmacological intervention. Diabetes Care 34. https://doi.org/10.2337/dc11-s221
Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328. https://doi.org/10.1016/j.numecd.2005.05.003
Derbel S, Chaieb M (2012) Growth establishment and phenology of four woody Saharan species. Afr J Ecol 51:307–318. https://doi.org/10.1111/aje.12036
Derbel S, Touzard B, Triki MA, Chaieb M (2010) Seed germination responses of the Saharan plant species Ephedra alata ssp. alenda to fungicide seed treatments in the laboratory and the field. Flora Morphol Distrib Funct Ecol Plants 205:471–474. https://doi.org/10.1016/j.flora.2009.12.025
DiStefano JK, Watanabe RM (2010) Pharmacogenetics of anti-diabetes drugs. Pharmaceuticals 3:2610–2646. https://doi.org/10.3390/ph3082610
Eddouks M, Lemhadri A, Michel J-B (2005) Hypolipidemic activity of aqueous extract of Capparis spinosa L. in normal and diabetic rats. J Ethnopharmacol 98:345–350. https://doi.org/10.1016/J.JEP.2005.01.053
Elahi-Moghaddam Z, Behnam-Rassouli M, Mahdavi-Shahri N et al (2013) Comparative study on the effects of type 1 and type 2 diabetes on structural changes and hormonal output of the adrenal cortex in male Wistar rats. J Diabetes Metab Disord 12:9. https://doi.org/10.1186/2251-6581-12-9
Erejuwa OO, Sulaiman SA, Wahab MSA et al (2010) Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats. Int J Mol Sci 11:2056–2066. https://doi.org/10.3390/ijms11052056
Eriksen M, Ezzati M, Holck S et al (2002) Overview/E. 14661–7000
FAN Y, LI J, YIN Q et al (2015) Effect of extractions from Ephedra sinica Stapf on hyperlipidemia in mice. Exp Ther Med 9:619–625. https://doi.org/10.3892/etm.2014.2117
Faraci FM, Didion SP (2004) Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol 24:1367–1373. https://doi.org/10.1161/01.ATV.0000133604.20182.cf
Favier A (2003) Le stress oxydant Intérêt conceptuel et expérimental dans la compréhension. Le Stress oxydant Intérêt conceptuel expérimental dans la compréhension. pp 108–115
Flohé L, Günzler WA (1984) [12] assays of glutathione peroxidase. Methods Enzymol 105:114–120. https://doi.org/10.1016/S0076-6879(84)05015-1
Frohnert BI, Sinaiko AR, Serrot FJ et al (2011) Increased adipose protein carbonylation in human obesity. Obesity (Silver Spring) 19:1735–1741. https://doi.org/10.1038/oby.2011.115
Géloën A, Roy PE, Bukowiecki LJ (1989) Regression of white adipose tissue in diabetic rats. Am J Phys 257:547–553
Genet S, Kale RK, Baquer NZ (2002) Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonellafoenum graecum). Mol Cell Biochem 236:7–12
Gillies CL, Abrams KR, Lambert PC et al (2007) Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. Br Med J 334:299–302. https://doi.org/10.1136/bmj.39063.689375.55
Giribabu N, Kumar KE, Rekha SS et al (2014) Chlorophytum borivilianum root extract maintains near normal blood glucose, insulin and lipid profile levels and prevents oxidative stress in the pancreas of streptozotocin-induced adult male diabetic rats. Int J Med Sci 11:1172–1184. https://doi.org/10.7150/ijms.9056
Gorus FK, Malaisse WJ, Pipeleers DG (1982) Selective uptake of alloxan by pancreatic B-cells. Biochem J 208:513–515. https://doi.org/10.1042/BJ2080513
Grankvist K, Marklund SL, Täljedal IB (1981) CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199:393–398
Gupta M., Mandowara D. JS (2008) Medicinal plants utilized by rural women of Rajasthan. Asian Agrihis 12321
Haleng J, Pincemail J, Defraigne J-O et al (2007) Revue médicale de Liège
Hegazi GAE, El-lamey TM (2012) In vitro production of some phenolic compounds from Ephedraalata Decne. J Appl Environ Biol Sci 1:158–163
Hellsten Y, Svensson M, Sjödin B et al (2001) Allantoin formation and urate and glutathione exchange in human muscle during submaximal exercise. Free Radic Biol Med 31:1313–1322
Ibragic S, Sofić E (2015) Chemical composition of various ephedra species. Bosn J Basic Med Sci 15:21–27. https://doi.org/10.17305/bjbms.2015.539
International Diabetes Federation (2016) Home. https://www.idf.org/. Accessed 28 May 2018
Jaisson S, Lorimier S, Ricard-Blum S et al (2006) Impact of carbamylation on type I collagen conformational structure and its ability to activate human polymorphonuclear neutrophils. Chem Biol 13:149–159. https://doi.org/10.1016/j.chembiol.2005.11.005
Jamel MJ, Pereira LPM, Mello NB et al (2010) Blood carbonyl protein measurement as a specific oxidative stress biomarker after intestinal reperfusion in rats. Acta Cir Bras 25:59–62. https://doi.org/10.1590/S0102-86502010000100014
Kade IJ, Ogunbolude Y, Kamdem JP, Rocha JBT (2014) Influence of gallic acid on oxidative stress-linked streptozotocin-induced pancreatic dysfunction in diabetic rats. J Basic Clin Physiol Pharmacol 25:35–45. https://doi.org/10.1515/jbcpp-2012-0062
Kebièche M, Lakroun Z, Mraïhi Z, Soulimani R (2011) Effet antidiabétogène et cytoprotecteur de l’extrait butanolique de Ranunculus repens L. et de la quercétine sur un modèle expérimental de diabète alloxanique. Phytothérapie 9:274–282. https://doi.org/10.1007/s10298-011-0651-4
Khanna A, Rizvi F, Chander R (2002) Lipid lowering activity of Phyllanthus niruri in hyperlipemic rats. J Ethnopharmacol 82:19–22. https://doi.org/10.1016/S0378-8741(02)00136-8
Kobayashi T, Kamata K (2002) Modulation by hydrogen peroxide of noradrenaline-induced contraction in aorta from streptozotocin-induced diabetic rat. Eur J Pharmacol 441:83–89
Kritchevsky D (1978) Fiber, lipides and theroscelerosis. Am J clnical Nutr 315:65–74
Kusano C, Ferrari B, Kusano AC (2008) Total antioxidant capacity: a biomarker in biomedical and nutritional studies. End Res R Cardeal Arcoverde Brazil J Cell Mol Biol 7:1663–1641
Lemper M, De Groef S, Stangé G et al (2016) A combination of cytokines EGF and CNTF protects the functional beta cell mass in mice with short-term hyperglycaemia. Diabetologia 59:1948–1958. https://doi.org/10.1007/s00125-016-4023-3
Leverve X (2003) Hyperglycemia and oxidative stress: complex relationships with attractive prospects. Intensive Care Med 29:511–514
Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796
Lévy P (2013) Interprétation des anomalies biologiques Amylase et Lipase. In: Société Nationale Française de Gastro-Entérologie
Li F, Tang H, Xiao F et al (2011) Protective effect of salidroside from Rhodiolae Radix on diabetes-induced oxidative stress in mice. Molecules 16:9912–9924. https://doi.org/10.3390/molecules16129912
Li W, Yuan G, Pan Y et al (2017) Network pharmacology studies on the bioactive compounds and action mechanisms of natural products for the treatment of diabetes mellitus: a review. Front Pharmacol 08:74. https://doi.org/10.3389/fphar.2017.00074
Lim YY, Lim TT, Tee JJ (2007) Antioxidant properties of several tropical fruits: a comparative study. Food Chem 103:1003–1008. https://doi.org/10.1016/J.FOODCHEM.2006.08.038
Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med 22:885–888
Marrif HI, Al Sunousi SI (2016) Pancreatic β cell mass death frontiers in pharmacologie review. Front Pharmacol 7
Mercier Y, Gatellier P, Renerre M (2004) Lipid and protein oxidation in vitro, and antioxidant potential in meat from Charolais cows finished on pasture or mixed diet. 66:467–473. https://doi.org/10.1016/S0309-1740(03)00135-9
Missaoui S, Ben Rhouma K, Yacoubi M-T et al (2014) Vanadyl sulfate treatment stimulates proliferation and regeneration of beta cells in pancreatic islets. J Diabetes Res 2014:1–7. https://doi.org/10.1155/2014/540242
Miyata T, Kurokawa K, van Ypersele de Strihou C (2000) Relevance of oxidative and carbonyl stress to long-term uremic complications. Kidney Int Suppl 76:S120–S125
Nabli MA (1991) Diversité floristique en Tunisie. In: Rejdali M, Heywood VH (eds) Conservation des resources végétales. Actes Ed, Rabat
Nawwar MAM, El-Sissi HI, Barakat HH (1984) Flavonoid constituents of Ephedra alata. Phytochemistry 23:2937–2939. https://doi.org/10.1016/0031-9422(84)83045-9
Nawwar MAM, Barakat HH, Buddrus J, Linscheid M (1985) Constituents of Ephedra. 24:818–819
Nissen SE, He M (2010) Setting the record straight. Am Med Assoc 303:24/31
Noor A, Gunasekaran S, Vijayalakshmi MA (2017) Improvement of insulin secretion and pancreatic β-cell function in streptozotocin-induced diabetic rats treated with Aloe vera extract. Pharm Res 9:S99–S104. https://doi.org/10.4103/pr.pr_75_17
Okutan L, Kongstad KT, Jäger AK, Staerk D (2014) High-resolution α-amylase assay combined with high-performance liquid chromatography–solid-phase extraction–nuclear magnetic resonance spectroscopy for expedited identification of α-amylase inhibitors: proof of concept and α-amylase inhibitor in cinnamon. J Agric Food Chem 62:11465–11471. https://doi.org/10.1021/jf5047283
Omary N, Akli Y (2011) Influence de la streptozotocine sur l’axe corticotrope du rat Wistar (Rattus norvegicus). Bull Soc 80:907–938
Palici IF, Liktor-Busa E, Zupkó I et al (2015) Study of in vitro antimicrobial and antiproliferative activities of selected Saharan plants. Acta Biol Hung 66:385–394. https://doi.org/10.1556/018.66.2015.4.3
Palla J, Abdeljlil AB, Desnuelle P (1968) Action de la biosynthèse de l’amylase et de quelques autres enzymes du pancréas de rat. Biochim Biophys Acta - Gen Subj 158:25–35. https://doi.org/10.1016/0304-4165(68)90068-8
Panneerselvam SR, Govindasamy S (2004) Effect of sodium molybdate on the status of lipids, lipid peroxidation and antioxidant systems in alloxan-induced diabetic rats. Clin Chim Acta 345:93–98. https://doi.org/10.1016/j.cccn.2004.03.005
Phinney KW, Ihara T, Sander LC (2005) Determination of ephedrine alkaloid stereoisomers in dietary supplements by capillary electrophoresis. J Chromatogr A 1077:90–97. https://doi.org/10.1016/J.CHROMA.2005.04.068
Punitha ISR, Rajendran K, Shirwaikar A, Shirwaikar A (2005) Alcoholic stem extract of Coscinium fenestratum regulates carbohydrate metabolism and improves antioxidant status in streptozotocin-nicotinamide induced diabetic rats. Evid Based Complement Alternat Med 2:375–381. https://doi.org/10.1093/ecam/neh099
Ramadan BK, Schaalan MF, Tolba AM (2017) Hypoglycemic and pancreatic protective effects of Portulaca oleracea extract in alloxan induced diabetic rats. BMC Complement Altern Med 17:37. https://doi.org/10.1186/s12906-016-1530-1
Réus GZ, dos Santos MAB, Abelaira HM et al (2016) Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behaviour and reduces oxidative stress in brain and pancreas. Diabetes Metab Res Rev 32:278–288
Rifai N, Warnick R (2006) Lipids, lipoproteins, apolipoproteins and other cardiovascular risk factors. Tietz Textb Clin Chem Mol Diagnosis 918–922
Rükgauer M, Neugebauer RJ, Plecko T (2001) The relation between selenium, zinc and copper concentration and the trace element dependent antioxidative status. J Trace Elem Med Biol 15:73–78. https://doi.org/10.1016/S0946-672X(01)80046-8
Sabu MC, Smitha K, Kuttan R (2002) Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J Ethnopharmacol 83:109–116
Schmid H, Forman LA, Cao X et al (1999) Heterogeneous cardiac sympathetic denervation and decreased myocardial nerve growth factor in streptozotocin-induced diabetic rats: implications for cardiac sympathetic dysinnervation complicating diabetes. Diabetes 48:603–608. https://doi.org/10.2337/DIABETES.48.3.603
Schmidt JS, Lauridsen MB, Dragsted LO et al (2012) Development of a bioassay-coupled HPLC-SPE-ttNMR platform for identification of α-glucosidase inhibitors in apple peel (Malus × domestica Borkh.). Food Chem 135:1692–1699. https://doi.org/10.1016/j.foodchem.2012.05.075
Singh N, Tyagi SD, Agarwal SC (1989) Effects of long term feeding of acetone extract of Momordica charantia (whole fruit powder) on alloxan diabetic albino rats. Ind]. Physiol Pharmae 33
Sintayehu B, Raghavendra Y, Asres K (2011) Radical scavenging activities of the leaf extracts and a flavonoid glycoside isolated from Cineraria abyssinica Sch. Bip. Exa. Rich. J Appl Pharm Sci 02:44–49. https://doi.org/10.7324/JAPS.2012.2407
Soni MG, Carabin IG, Griffiths JC, Burdock GA (2004) Safety of ephedra: lessons learned. Toxicol Lett 150:97–110. https://doi.org/10.1016/J.TOXLET.2003.07.006
Striegel L, Kang B, Pilkenton SJ et al (2015) Effect of black tea and black tea pomace polyphenols on α−glucosidase and α-amylase inhibition, relevant to type 2 diabetes prevention. Front Nutr 2:3. https://doi.org/10.3389/fnut.2015.00003
Tang YZ, Wang G, Jiang ZH et al (2015) Efficacy and safety of vildagliptin, sitagliptin, and linagliptin as add-on therapy in Chinese patients with T2DM inadequately controlled with dual combination of insulin and traditional oral hypoglycemic agent. Diabetol Metab Syndr 7:1–9. https://doi.org/10.1186/s13098-015-0087-3
Thomson M, Al-Qattan KK, Bordia T, Ali M (2006) Including garlic in the diet may help lower blood glucose, cholesterol, and triglycerides. J Nutr 136:800S–802S. https://doi.org/10.1093/jn/136.3.800S
Tiedge M, Richter T, Lenzen S (2000) Importance of cysteine residues for the stability and catalytic activity of human pancreatic beta cell glucokinase. Arch Biochem Biophys 375:251–260. https://doi.org/10.1006/ABBI.1999.1666
Tripathi BK, Srivastava AK (2006) Diabetes mellitus: complications and therapeutics. Med Sci Monit 12:RA130–RA147
Upreti J, Ali S, Basir SF et al (2014) Amelioration of altered antioxidant status by sodium-orthovanadate and Azadirachta indica leaf extract on cardiac and skeletal muscles antioxidant defence system in streptozotocin induced diabetic. 3:2176–2187
Uriu-Adams JY, Rucker RB, Commisso JF, Keen CL (2005) Diabetes and dietary copper alter 67Cu metabolism and oxidant defense in the rat. J Nutr Biochem 16:312–320. https://doi.org/10.1016/j.jnutbio.2005.01.007
Vincent AM, Russell JW, Low P, Feldman EL (2004) Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 25:612–628. https://doi.org/10.1210/er.2003-0019
Visavadiya NP, Narasimhacharya AVRL (2011) Ameliorative effects of herbal combinations in hyperlipidemia. Oxidative Med Cell Longev 2011:160408. https://doi.org/10.1155/2011/160408
Waguri M, Yamamoto K, Miyagawa JI et al (1997) Demonstration of two different processes of beta-cell regeneration in a new diabetic mouse model induced by selective perfusion of alloxan. Diabetes 46:1281–1290
Wolff SP (1993) Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull 49:642–652
Xiu L-M, Miura AB, Yamamoto K et al (2001) Pancreatic islet regeneration by ephedrine in mice with streptozotocin-induced diabetes. Am J Chin Med 29:493–500. https://doi.org/10.1142/S0192415X01000514
Yadav D, Nair S, Norkus EP, Pitchumoni CS (2000) Nonspecific hyperamylasemia and hyperlipasemia in diabetic ketoacidosis: incidence and correlation with biochemical abnormalities. Am J Gastroenterol 95:3123–3128. https://doi.org/10.1111/j.1572-0241.2000.03279.x
Yen M, Ewald MB (2012) Toxicity of weight loss agents. J Med Toxicol 8:145–152. https://doi.org/10.1007/s13181-012-0213-7
Zengin G, Guler GO, Aktumsek A et al (2015) Enzyme inhibitory properties, antioxidant activities, and phytochemical profile of three medicinal plants from Turkey. Adv Pharmacol Sci 2015:1–8. https://doi.org/10.1155/2015/410675
Acknowledgments
We would like to thank Dr. Habib Mosbah and Dr. Oussama Ahrasem for their technical assistance.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interests.
Additional information
Responsible editor: Philippe Garrigues
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ben Lamine, J., Boujbiha, M.A., Dahane, S. et al. α-Amylase and α-glucosidase inhibitor effects and pancreatic response to diabetes mellitus on Wistar rats of Ephedra alata areal part decoction with immunohistochemical analyses. Environ Sci Pollut Res 26, 9739–9754 (2019). https://doi.org/10.1007/s11356-019-04339-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-019-04339-3