Environmental Science and Pollution Research

, Volume 26, Issue 8, pp 7994–8006 | Cite as

Arsenic, selenium, and metals in a commercial and vulnerable fish from southwestern Atlantic estuaries: distribution in water and tissues and public health risk assessment

  • Esteban AviglianoEmail author
  • Barbara Maichak de Carvalho
  • Rodrigo Invernizzi
  • Marcelo Olmedo
  • Raquel Jasan
  • Alejandra V. Volpedo
Research Article


The anadromous catfish Genidens barbus is a vulnerable and economically important species from the Southwestern Atlantic Ocean. Concentrations of As, Co, Fe, Se, and Zn were determined in water and muscle, gill, and liver of catfish from two southwestern Atlantic estuaries (Brazil and Argentina) and health risk via fish consumption was evaluated. High spatial variability was observed in the metals, As, and Se distribution for both estuaries. Considering all tissues, element concentrations (mg/kg, wet weight) were As = 0.41–23.50, Co = 0.01–2.9, Fe = 2.08–773, Se = 0.15–10.7, and Zn = 3.97–2808). Most of the trace elements tended to be higher in Brazil than in Argentina, except for Co, Fe, Se, and Zn in liver and Fe and Co in muscle and gill, respectively. Arsenic accumulation order was muscle > liver ≥ gill. Only As (muscle) was above the maximum recommended by international guidelines at both estuaries. The target hazard quotient ranged from 0.10 to 1.58, suggesting that people may experience significant health risks through catfish consumption. Supposing that the inorganic/toxic As ranged between 1 and 20% of the total, the recommended maximum intakes per capita bases were 6.1–95 and 8.4–138 kg/year (wet weight) for Brazil and Argentina, respectively. Carcinogenic risk for As intake was within the acceptable range but close to the recommended limit (> 10−4). These results highlights the importance of quantifying the As species in catfish muscle in order to generate more reliable risk estimates.


Arsenic Estuary Fish Food composition Neutron activation analysis Pollution 



The authors thank Rita Plá for her valuable assistance during the preparation of this manuscript. The also wish to acknowledge the anonymous reviewers for their constructive comments, which helped improve the manuscript.


 The authors thank CONICET, Universidad de Buenos Aires (UBACYT 20020150100052BA); ANPCyT (PICT 2015-1823); Comisión Nacional de Energía Atómica (CNEA); and CNPQ (141267/2015-1) for financial and logistic support.


  1. AFC (2012) Argentinean food codex. Buenos Aires, ArgentinaGoogle Scholar
  2. Angeli JLF, Trevizani TH, Ribeiro A, Machado EC, Figueira RCL, Markert B, Fraenzle S, Wuenschmann S (2013) Arsenic and other trace elements in two catfish species from Paranaguá estuarine complex, Paraná, Brazil. Environ Monit Assess 185:8333–8342. CrossRefGoogle Scholar
  3. ANVISA (2013) Agência Nacional de Vigilância Sanitária, Brazil, RS 168/2013Google Scholar
  4. ANVISA (1998) Agência Nacional de Vigilância Sanitária, Brazil, RS 685/1998Google Scholar
  5. APHA (2012) Standard methods for the examination of water and wastewater, 22nd ednGoogle Scholar
  6. ATSDR (2007) Toxicological profile for arsenic. US Public Heal Serv Agency Toxic Subst Dis Regist. doi:, Genomic structure and variation of nuclear factor (erythroid-derived 2)-like 2
  7. Avigliano E, Carvalho B, Velasco G, Tripodi P, Vianna M, Volpedo AV (2016a) Nursery areas and connectivity of the adults anadromous catfish (Genidens barbus) revealed by otolith-core microchemistry in the south-western Atlantic ocean. Mar Freshw Res 68:931. CrossRefGoogle Scholar
  8. Avigliano E, Leisen M, Romero R, Carvalho B, Velasco G, Vianna M, Barra F, Volpedo AV (2017) Fluvio-marine travelers from South America: cyclic amphidromy and freshwater residency, typical behaviors in Genidens barbus inferred by otolith chemistry. Fish Res 193:184–194. CrossRefGoogle Scholar
  9. Avigliano E, Lozano C, Plá RR, Volpedo AV (2016b) Toxic element determination in fish from Paraná River Delta (Argentina) by neutron activation analysis: tissue distribution and accumulation and health risk assessment by direct consumption. J Food Compos Anal 54:27–36. CrossRefGoogle Scholar
  10. Avigliano E, Schenone NF (2015) Human health risk assessment and environmental distribution of trace elements, glyphosate, fecal coliform and total coliform in Atlantic rainforest mountain rivers (South America). Microchem J 122:149–158. CrossRefGoogle Scholar
  11. Avigliano E, Schenone NF, Volpedo AV, Goessler W, Fernández Cirelli A (2015a) Heavy metals and trace elements in muscle of silverside (Odontesthes bonariensis) and water from different environments (Argentina): aquatic pollution and consumption effect approach. Sci Total Environ 506–507:102–108. CrossRefGoogle Scholar
  12. Avigliano E, Velasco G, Volpedo AV (2015b) Assessing the use of two southwestern Atlantic estuaries by different life cycle stages of the anadromous catfish Genidens barbus (Lacépède, 1803) as revealed by Sr:Ca and Ba:Ca ratios in otoliths. J Appl Ichthyol 31:740–743. CrossRefGoogle Scholar
  13. Baigún CRM, Nestler JM, Minotti P, Oldani N (2012) Fish passage system in an irrigation dam (Pilcomayo River basin): when engineering designs do not match ecohydraulic criteria. Neotrop Ichthyol 10:741–750. CrossRefGoogle Scholar
  14. Bustamante P, Bocher P, Chérel Y, Miramand P, Caurant F (2003) Distribution of trace elements in the tissues of benthic and pelagic fish from the Kerguelen Islands. Sci Total Environ 313:25–39. CrossRefGoogle Scholar
  15. Camilión MC, Manassero MJ, Hurtado MA, Ronco AE (2003) Copper, lead and zinc distribution in soils and sediments of the south-western coast of the Río de La Plata estuary. J Soils Sediments 3:213–220. CrossRefGoogle Scholar
  16. Chou CHSJ, De Rosa CT (2003) Case studies—arsenic. Int J Hyg Environ Health 206:381–386. CrossRefGoogle Scholar
  17. Ciardullo S, Aureli F, Raggi A, Cubadda F (2010) Arsenic speciation in freshwater fish: focus on extraction and mass balance. Talanta 81:213–221. CrossRefGoogle Scholar
  18. Clearwater SJ, Farag AM, Meyer JS (2002) Bioavailability and toxicity of dietborne copper and zinc to fish. Comp Biochem Physiol - C Toxicol Pharmacol 2(3):269–313CrossRefGoogle Scholar
  19. da Rocha ML, Sa F, Campos MS et al (2017) Metals impact into the Paranaguá estuarine complex (Brazil) during the exceptional flood of 2011. Braz J Oceanogr 65:54–68. CrossRefGoogle Scholar
  20. Del Pino M, Bay L, Lejarraga H et al (2005) Peso y estatura de una muestra nacional de 1.971 adolescentes de 10 a 19 años : las referencias argentinas continúan vigentes. Arch Argentino Pediatría 103:323–330Google Scholar
  21. Di Dario F, Alves CBM, Boos H et al (2015) A better way forward for Brazil’s fisheries. Science (80-) 363:1079–1079CrossRefGoogle Scholar
  22. dos Anjos VE, da Eunice C, Machado E, Grassi MT (2012) Biogeochemical behavior of arsenic species at Paranaguá estuarine complex. Aquat Geochemistry, Southern Brazil. CrossRefGoogle Scholar
  23. Dural M, Lugal Göksu MZ, Özak AA, Derici B (2006) Bioaccumulation of some heavy metals in different tissues of Dicentrarchus labrax L, 1758, Sparus aurata L, 1758 and Mugil cephalus L, 1758 from the ÇamlIk lagoon of the eastern cost of Mediterranean (Turkey). Environ Monit Assess 118:65–74. CrossRefGoogle Scholar
  24. EFSA (2009) EFSA panel on contaminants in the food chain (CONTAM). Scientific opinion on arsenic in Food 1. European Food Safety Authority. EFSA J 7:1351. CrossRefGoogle Scholar
  25. El-Moselhy KM, Othman AI, Abd El-Azem H, El-Metwally MEA (2014) Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egypt J Basic Appl Sci 1:97–105. CrossRefGoogle Scholar
  26. Erdoǧrul Ö, Erbilir F (2007) Heavy metal and trace elements in various fish samples from Sir Dam Lake, Kahramanmaraş, Turkey. Environ Monit Assess 130:373–379. CrossRefGoogle Scholar
  27. FAO/WHO (1984) Codex alimentarius volume XVII-contaminants. RomaGoogle Scholar
  28. FAO (2018) The state of world fisheries and aquacultureGoogle Scholar
  29. FAO (2016) The state of world fisheries and aquacultureGoogle Scholar
  30. Gao Y, Baisch P, Mirlean N, Rodrigues da Silva Júnior FM, van Larebeke N, Baeyens W, Leermakers M (2018) Arsenic speciation in fish and shellfish from the North Sea (southern bight) and Acu port area (Brazil) and health risks related to seafood consumption. Chemosphere 191:89–96. CrossRefGoogle Scholar
  31. Goldhaber SB (2003) Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 38(2):232–242. CrossRefGoogle Scholar
  32. Guerrero RA, Acha EM, Framiñan MB, Lasta CA (1997) Physical oceanography of the Río de la Plata estuary, Argentina. Cont Shelf Res 17:727–742. CrossRefGoogle Scholar
  33. Jarić I, Lenhardt M, Pallon J, Elfman M, Kalauzi A, Suciu R, Cvijanović G, Ebenhard T (2011) Insight into Danube sturgeon life history: trace element assessment in pectoral fin rays. Environ Biol Fish 90:171–181. CrossRefGoogle Scholar
  34. Jovičić K, Nikolić DM, Višnjić-Jeftić Ž, Đikanović V, Skorić S, Stefanović SM, Lenhardt M, Hegediš A, Krpo-Ćetković J, Jarić I (2015) Mapping differential elemental accumulation in fish tissues: assessment of metal and trace element concentrations in Wels catfish (Silurus glanis) from the Danube River by ICP-MS. Environ Sci Pollut Res 22:3820–3827. CrossRefGoogle Scholar
  35. Kalantzi I, Pergantis SA, Black KD, Shimmield TM, Papageorgiou N, Tsapakis M, Karakassis I (2015) Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers. Food Chem 194:659–670. CrossRefGoogle Scholar
  36. Kalia K, Khambholja DB (2015) Arsenic contents and its biotransformation in the marine environment. In: Handbook of Arsenic ToxicologyGoogle Scholar
  37. Knoll GF (2010) Radiation detection and measurement. Phoenix Usa 3:830Google Scholar
  38. Lana PC, Marone E, Lopes RM, Machado EC (2001) The subtropical estuarine complex of Paranaguá Bay, Brazil. Ecol Stud 144:131–145. CrossRefGoogle Scholar
  39. Langston WJ (1983) The behavior of arsenic in selected United Kingdom estuaries. Can J Fish Aquat Sci 40:s143–s150. CrossRefGoogle Scholar
  40. Lawrence JF, Conacher HBS, Michalik P, Tam G (1986) Identification of arsenobetaine and arsenocholine in Canadian fish and shellfish by high-performance liquid chromatography with atomic absorption detection and confirmation by fast atom bombardment mass spectrometry. J Agric Food Chem 34:315–319. CrossRefGoogle Scholar
  41. Liu F, Ni HG, Chen F, Luo ZX, Shen H, Liu L, Wu P (2012) Metal accumulation in the tissues of grass carps (Ctenopharyngodon idellus) from fresh water around a copper mine in Southeast China. Environ Monit Assess 184:4289–4299. CrossRefGoogle Scholar
  42. Marcovecchio JE (2004) The use of Micropogonias furnieri and Mugil liza as bioindicators of heavy metals pollution in la Plata river estuary, Argentina 219-226. Sci Total Environ 323:219–226. CrossRefGoogle Scholar
  43. Marrero J, Polla G, Jiménez Rebagliati R, Plá R, Gómez D, Smichowski P (2007) Characterization and determination of 28 elements in fly ashes collected in a thermal power plant in Argentina using different instrumental techniques. Spectrochim Acta - Part B At Spectrosc 62:101–108. CrossRefGoogle Scholar
  44. Mendoza-Carranza M, Vieira JP (2008) Ontogenetic niche feeding partitioning in juvenile of white sea catfish Genidens barbus in estuarine environments, southern Brazil. J Mar Biol Assoc United Kingdom 89:839. CrossRefGoogle Scholar
  45. Messaoudi I, Deli T, Kessabi K, Barhoumi S, Kerkeni A, Saïd K (2009) Association of spinal deformities with heavy metal bioaccumulation in natural populations of grass goby, Zosterisessor ophiocephalus Pallas, 1811 from the Gulf of Gabès (Tunisia). Environ Monit Assess 156:551–560. CrossRefGoogle Scholar
  46. MINAGRO (2018) Subsecretaría de Pesca y Acuicultura, Argentina. Ministerio de Agroindustria. Available from: Accessed 21 Dec 18
  47. MMA (2014) Ministério do Meio Ambiente do Brasil. Portarias Nos. 443, 444, 445, de 17 de Dezembro de 2014, Diário Oficial da União. Ministério do Meio Ambiente, BrasiliaGoogle Scholar
  48. Monferrán MV, Garnero P, De Los Angeles Bistoni M et al (2016) From water to edible fish. Transfer of metals and metalloids in the San Roque reservoir (Córdoba, Argentina). Implications associated with fish consumption. Ecol Indic 63:48–60. CrossRefGoogle Scholar
  49. Mozaffarian D (2009) Fish, mercury, selenium and cardiovascular risk: current evidence and unanswered questions. Int J Environ Res Public Health 6(6):1894–1916CrossRefGoogle Scholar
  50. Munita CS, Paiva RP, Oliveira PMS, Momosea EF, Plá R, Moreno M, Andonie O, Falabella F, Muñoz L, Kohnenkamp I (2001) Intercomparison among three activation analysis laboratories in South America. J Trace Microprobe Tech 19:189–197. CrossRefGoogle Scholar
  51. Neff JM (1997) Ecotoxicology of arsenic in the marine environment. Environ Toxicol Chem 16(5):917–927Google Scholar
  52. Olejnik SF, Algina J (1984) Parametric ANCOVA and the rank transform ANCOVA when the data are conditionally non-normal and heteroscedastic. J Educ Behav Stat 9:129–149CrossRefGoogle Scholar
  53. Özcan Ş, Bakırdere S, Ataman OY (2016) Speciation of arsenic in fish by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry. Anal Lett 2719:2501–2512. CrossRefGoogle Scholar
  54. Ploetz DM, Fitts BE, Rice TM (2007) Differential accumulation of heavy metals in muscle and liver of a marine fish, (king mackerel, Scomberomorus cavalla Cuvier) from the northern Gulf of Mexico, USA. Bull Environ Contam Toxicol 78:124–127. CrossRefGoogle Scholar
  55. Prestes EC, Anjos VE, Sodré FF, Grassi MT (2006) Copper, lead and cadmium loads and behavior in urban stormwater runoff in Curitiba. Brazil J Braz Chem Soc 17:53–60. CrossRefGoogle Scholar
  56. Qiu Y-W, Lin D, Liu J-Q, Zeng EY (2011) Bioaccumulation of trace metals in farmed fish from South China and potential risk assessment. Ecotoxicol Environ Saf 74:284–293. CrossRefGoogle Scholar
  57. Reis EG (1986) Age and growth of the marine catfish, Netuma barba (Siluriformes, Ariidae), in the estuary of the Patos lagoon (Brasil). Fish Bull 84:679–686Google Scholar
  58. Resnizky SM, Plá RR, Jasan RC, Hevia SE, Moreno MA, Invenizzi R (2006) The experience of accreditation of an analytical laboratory at the argentine atomic energy commission. Accred Qual Assur 10:590–593. CrossRefGoogle Scholar
  59. Riba I, García-Luquea RE, Blasco J, DelValls TA (2003) Bioavailability of heavy metals bound to estuarine sediments as a function of pH and salinity values. Chem Speciat Bioavailab 15:101–114. CrossRefGoogle Scholar
  60. Rodríguez Castro MC, Marcóp L, Ranieri MC et al (2017) Arsenic in the health of ecosystems: spatial distribution in water, sediment and aquatic biota of Pampean streams. Environ Monit Assess 189:542. CrossRefGoogle Scholar
  61. Ronco A, Peluso L, Jurado M et al (2008) Screening of sediment pollution in tributaries from the southwestern coast of the Rio de la Plata estuary. Lat Am J Sedimentol Basin Anal 15:67–75Google Scholar
  62. Rosso JJ, Puntoriero ML, Troncoso JJ, Volpedo AV, Fernández Cirelli A (2011a) Occurrence of fluoride in arsenic-rich surface waters: a case study in the Pampa plain, Argentina. Bull Environ Contam Toxicol 87:409–413. CrossRefGoogle Scholar
  63. Rosso JJ, Schenone NF, Pérez Carrera A, Fernández Cirelli A (2013) Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers. Environ Geochem Health 35:201–214. CrossRefGoogle Scholar
  64. Rosso JJ, Troncoso JJ, Fernández Cirelli A (2011b) Geographic distribution of arsenic and trace metals in lotic ecosystems of the Pampa plain, Argentina. Bull Environ Contam Toxicol 86:129–132. CrossRefGoogle Scholar
  65. Schenone NF, Avigliano E, Goessler W, Fernández Cirelli A (2014) Toxic metals, trace and major elements determined by ICPMS in tissues of Parapimelodus valenciennis and Prochilodus lineatus from Chascomus Lake, Argentina. Microchem J 112:127–131CrossRefGoogle Scholar
  66. Schenone NF, Volpedo AV, Cirelli AF (2007) Trace metal contents in water and sediments in Samborombón Bay wetland, Argentina. Wetl Ecol Manag 15:303–310. CrossRefGoogle Scholar
  67. Squadrone S, Prearo M, Brizio P, Gavinelli S, Pellegrino M, Scanzio T, Guarise S, Benedetto A, Abete MC (2013) Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian Rivers. Chemosphere 90:358–365. CrossRefGoogle Scholar
  68. Subotić S, Spasic S, Višnjić-Jeftić Ž et al (2013) Heavy metal and trace element bioaccumulation in target tissues of four edible fish species from the Danube River (Serbia). Ecotoxicol Environ Saf 98:196–202. CrossRefGoogle Scholar
  69. Tao Y, Yuan Z, Xiaona H, Wei M (2012) Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicol Environ Saf 81:55–64. CrossRefGoogle Scholar
  70. Tavares LE, Luque JL (2004) Community ecology of the metazoan parasites of white sea catfish, Netuma barba (Osteichthyes: Ariidae), from the coastal zone of the state of Rio De Janeiro, Brazil. Braz J Biol 64:169–176. CrossRefGoogle Scholar
  71. Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer K, Conklin S, Karagas MR, Francesconi KA (2017) Human exposure to organic arsenic species from seafood. Sci Total Environ 580:266–282. CrossRefGoogle Scholar
  72. USEPA (2015) Risk-based concentration table. US Environmental Protection Agency, Washington DC Google Scholar
  73. USEPA (1991) Technical support document for water quality-based toxics controlGoogle Scholar
  74. USEPA (2010) United States Environmental Protection Agency. Risk-based concentration table. Region 3. Philadelphia, PAGoogle Scholar
  75. USFDA (1993) Guidance document for arsenic in shellfish. US Food and Drug Administration, WashingtonGoogle Scholar
  76. Van De Vis H, Kestin S, Robb D et al (2003) Is humane slaughter of fish possible for industry? Aquac Res 34:211–220. CrossRefGoogle Scholar
  77. Velasco G, Reis EG, Vieira JP (2007) Calculating growth parameters of Genidens barbus (Siluriformes, Ariidae) using length composition and age data. J Appl Ichthyol 23:64–69. CrossRefGoogle Scholar
  78. Villar C, Stripeikis J, D’Huicque L et al (1999a) Cd, Cu and Zn concentrations in sediments and the invasive bivalves Limnoperna fortunei and Corbicula fluminea at the Rio de la Plata basin. Argentina Hydrobiologia 416:41–49. CrossRefGoogle Scholar
  79. Villar C, Stripeikis J, Tudino M, d'Huicque L, Troccoli O, Bonetto C (1999b) Trace metal concentrations in coastal marshes of the lower Paraná River and the Río de la Plata estuary. Hydrobiologia 397:187–195CrossRefGoogle Scholar
  80. Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159:2575–2585. CrossRefGoogle Scholar
  81. Yilmaz F (2009) The comparison of heavy metal concentrations (Cd, Cu, Mn, Pb, and Zn) in tissues of three economically important fish (Anguilla anguilla, Mugil cephalus and Oreochromis niloticus) inhabiting Köycegiz Lake-Mugla (Turkey). Turkish. J Sci Technol 4:7–15Google Scholar
  82. Zhang W, Guo Z, Song D, du S, Zhang L (2018) Arsenic speciation in wild marine organisms and a health risk assessment in a subtropical bay of China. Sci Total Environ 626:621–629. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Producción Animal (INPA), CONICET, Facultad de Ciencias VeterinariasUniversidad de Buenos Aires (UBA)Buenos AiresArgentina
  2. 2.Programa de Pós-Graduação em Zoologia, Departamento de Zoologia - UFPR, Centro Politécnico, Bairro Jardim das AméricasCuritibaBrazil
  3. 3.Laboratorio de Técnicas Analíticas Nucleares, Departamento Química Nuclear, Gerencia de Química Nuclear y Ciencias de la Salud – GAATEN, Centro Atómico Ezeiza, Comisión Nacional de Energía AtómicaEzeizaArgentina

Personalised recommendations