Skip to main content

Advertisement

Log in

Light-absorbing impurities in snow of the Indian Western Himalayas: impact on snow albedo, radiative forcing, and enhanced melting

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Seasonal snow cover in the Himalayas acts as source of fresh water for several Asian rivers such as Indus, Ganges, Brahmaputra, and Yangtze. Early loss of seasonal snow exposes the ice layer of the glaciers directly to sunlight, consequently leading to their ablation and alterations in discharge of glacier-fed rivers. Therefore, any alteration in the melting rate of the Himalayan snow pack can significantly affect the ecological balance in the region. Besides global warming, enhanced melting of snow, caused by light-absorbing impurities (LAIs) such as dust and elemental carbon (EC), has also been recognized as prominent cause of enhanced melting of snow in the Himalayas of China and Nepal. However, in light of vast area of the Himalayas and persistent emissions from India, studies, emphasizing the potential of LAIs to substantially affect the snow radiation budget of snow cover in IWHs, are still scanty. Therefore, in this study, field campaigns were made on three glaciers, i.e., Hamta, Beas Kund, and Deo Tibba, in IWHs to collect snow samples for estimation of LAIs. Snow of the studied glaciers was observed to be contaminated with 13.02 to 74.57 ng/g of EC and 32.14 to 216.54 μg/g of dust. Albedo simulations done using SNow and ICe Aerosol Radiation (SNICAR) model indicated that besides the changes caused by increased grain size, EC and dust, cumulatively induced 0.60 to 32.65% reduction in albedo of snow. Further assessment, constrained by measurements, illustrated that radiative forcing (RF), of 1.8 to 80 W/m2, was instigated due to enhanced thermal absorption of snow. Ten hours of daily mean RFs in this range could correspond to 3 to 9.65 mm/d of snow melt and contribute significantly in reducing the seasonal snow cover in IWHs. Considering the consequences of LAIs-induced snow melt and lack of in situ observations in the IWHs, the outcomes of this study could assist researchers and policy makers in developing efficient climate models and framing mitigation measures, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adolph AC, Albert MR, Lazarcik J, Dibb JE, Amante JM, Price A (2017) Dominance of grain size impacts on seasonal snow albedo at open sites in New Hampshire. J Geophy Res-Atmos 122:121–139

    Article  Google Scholar 

  • Ageta Y, Higuchi K (1984) Estimation of mass balance components of a summer-accumulation type glacier in the Nepal Himalaya. Geogr Ann A 66:249–255

    Article  Google Scholar 

  • Andreae MO, Gelencsér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148

    Article  CAS  Google Scholar 

  • Bollasina M, Nigam S, Lau KM (2008) Absorbing aerosols and summer monsoon evolution over South Asia: an observational portrayal. J Clim 21:3221–3239

    Article  Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, Deangelo BJ, Flaneer MG, Ghan S, Karcher B, Koch D, Kinne D, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataramn C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophy Res-Atmos 118:5380–5552

    Article  CAS  Google Scholar 

  • Cao JJ, Chow JC, Lee SC, Li Y, Chen SW, An ZS, Fung K, Watson JG, Zhu CS, Liu SX (2005) Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. J Atmos Chem Phy 5:3127–3137

    Article  CAS  Google Scholar 

  • Carmagnola CM, Domine F, Dumont M, Wright P, Strellis B, Bergin M, Dibb J, Picard G, Libois Q, Arnaud L, Morin S (2013) Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack. Cryosphere 7:1139–1160

    Article  Google Scholar 

  • Choi KC, Woo JH, Kim HK, Choi J, Eum JH, Baek BH (2013) Modeling of emissions from open biomass burning in Asia using the BlueSky Framework. Asian J Atmos Environ 7:25–37

    Article  CAS  Google Scholar 

  • Conger SM, McClung DM (2009) Comparison of density cutters for snow profile observations. J Glaciol 55:163–169

    Article  Google Scholar 

  • Doherty SJ, Grenfell TC, Forsström S, Hegg DL, Warren SG, Brandt R (2012) Observed vertical redistribution of black carbon and other light-absorbing particles in melting snow. J Geophys Res 118:5553–5569

    Google Scholar 

  • Dong Z, Qin D, Kang S, Liu Y, Li Y, Huang J, Qin X (2016) Individual particles of cryoconite deposited on the mountain glaciers of the Tibetan Plateau: insights into chemical composition and sources. Atmos Environ 138:114–124

    Article  CAS  Google Scholar 

  • Dong Z, Kang S, Guo J, Zhang Q, Wang X, Qin D (2017) Composition and mixing states of brown haze particle over the Himalayas along two transboundary south-north transects. Atmos Environ 156:24–35

    Article  CAS  Google Scholar 

  • Fitzgerald WF (1999) Clean hands, dirty hands: Clair Patterson and the aquatic biogeochemistry of mercury. Clean Hands: Clair Patterson’s Crusade Against Environmental Lead Contamination. Nova Science Commack, NY, pp 119–137

    Google Scholar 

  • Flanner MG, Zender CS, Randerson JT, Rasch PJ (2007) Present day climate forcing and response from black carbon in snow. J Geophys Res 112:D11202

    Article  CAS  Google Scholar 

  • Flanner MG, Zender CS, Hess PG, Mahowald NM, Painter TH, Ramanathan V, Rasch PJ (2009) Springtime warming and reduced snow cover from carbonaceous particles. Atmos Chem Phys 9:2481–2497

    Article  CAS  Google Scholar 

  • Frey H, Machguth H, Huss M, Huggel C, Bajracharya S, Bolch T, Kulkarni A, Linsbauer A, Salzmann N, Stoffel M (2014) Estimating the volume of glaciers in the Himalayan-Karakoram region using different methods. Cryosphere 8:2313–2333

    Article  Google Scholar 

  • Gautam R, Hsu NC, Lau WKM, Yasunari TJ (2013) Satellite observations of desert dust-induced Himalayan snow darkening. J Geophy Res Lett 40:988–993

    Article  Google Scholar 

  • Geological Survey of India-GSI (2011) Annual Report 2010-2011. India.

  • Gertler CG, Puppala SP, Panday A, Stumm D (2015) Black carbon and the Himalayan cryosphere: a review. Atmos Environ 125:404–417

    Article  CAS  Google Scholar 

  • Ginot P, Dumont M, Lim S, Patris N, Taupin JD, Wagnon P, Gilbert A, Arnaud Y, Marinoni A, Bonasoni P, Laj P (2014) A 10 year record of black carbon and dust from a Mera Peak ice core (Nepal): variability and potential impact on melting of Himalayan glaciers. Cryosphere 8:1479–1496

    Article  Google Scholar 

  • GLIMS and National Snow and Ice Data Center (2005, updated 2012) GLIMS Glacier Database, Version 1. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center.

  • Gusain HS, Mishra VD, Arora MK (2014) Estimation of net shortwave radiation flux of western Himalayan snow cover during clear sky days using remote sensing and meteorological data. J Remote Sens Lett 5:37–41

    Article  Google Scholar 

  • Hall DK, Martinec J (1985) Remote sensing of ice and snow. Chapman and Hall, New York, p 189

    Book  Google Scholar 

  • Hansen J, Nazarenko L (2004) Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci U S A 101:423–428

    Article  CAS  Google Scholar 

  • Hyvarinen AP, Raatikainen T, Brus D, Komppula M, Panwar TS, Hooda RK, Sharma VP, Lihavainen H (2011) Effect of the summer monsoon on aerosols at two measurement stations in Northern India – Part 1: PM and BC concentrations. Atmos Chem Phys 11:8271–8282

    Article  CAS  Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385

    Article  CAS  Google Scholar 

  • IPCC (2013) Annex I: Atlas of Global and Regional Climate Projections [van Oldenborgh, G.J., M. Collins, J. Arblaster, J.H. Christensen, J. Marotzke, S.B. Power, M. Rummukainen and T. Zhou (eds.)]. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Jacobi HW, Lim S, Ménégoz M, Ginot P, Laj P, Bonasoni P, Stocchi P, Marinponi A, Arnaud Y (2015) Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observation and modelling of the impact on snow albedo, melting, and radiative forcing. Cryoshere 9:1385–1400

    Article  Google Scholar 

  • Ji Z (2016) Modeling black carbon and its potential radiative effects over the Tibetan Plateau. Adv Clim Chang Res 7:139–144

    Article  Google Scholar 

  • Ji Z, Kang S, Cong Z, Zhang Q, Yao T (2015) Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: distribution, transportation, deposition, and climatic effects. Clim Dyn 45:2831–2846

    Article  Google Scholar 

  • Ji Z, Kang S, Zhang Q, Cong Z, Chen P, Sillanpää M (2016) Investigation of mineral aerosols radiative effects over Hihg Mountain Asia in 1990–2009 using a regional climate model. Atmos Res 178–179:484–496

    Article  CAS  Google Scholar 

  • Kaspari S, Painter TH, Gysel M, Skiles SM, Schwikowski M (2014) Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. J Atmos Chem Phy 14:8089–8103

    Article  CAS  Google Scholar 

  • Kaspari S, McKenzie S, Delaney I, Dixon D, Painter TH (2015) Accelerated glacier melt on Snow Dome, Mount Olympus, Washington, USA, due to deposition of black carbon and mineral dust from wildfire. J Geophy Res-Atmos 120:2793–2807

    Article  Google Scholar 

  • Khan AA, Pant NC, Sarkar A, Tandon SK, Thamban M, Mahalinganathan K (2017) The Himalayan cryosphere: a critical assessment and evaluation of glacial melt fraction in the Bhagirathi basin. Geosci Front 8:107–115

    Article  CAS  Google Scholar 

  • Lim G, Penner JE, Flanner MG, Sillman S, Xu L, Zhou C (2014) Radiative forcing of organic aerosol in the atmosphere and on snow: effects of SOA and brown carbon. J Geophy Res-Atmos 119:7453–7476

    Article  Google Scholar 

  • Marinoni A, Cristofanelli P, Laj P, Duchi R, Calzolari F, Decesari S, Sellegri K, Vuillermoz E, Verza GP, Villani P, Bonasoni P (2010) Aerosol mass and black carbon concentrations, two year-round observations at NCO-P (5079m, Southern Himalayas). Atmos Chem Phys 10:8551–8562

    Article  CAS  Google Scholar 

  • Mauro BD, Fava F, Ferrero L, Garzonio R, Baccolo G, Delmonte B, Colombo R (2015) Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations. J Geophys Res-Atmos 120:6080–6097

    Article  Google Scholar 

  • Ménégoz M, Krinner G, Balkanski Y, Boucher O, Cozic A, Lim S, Ginot P, Laj P, Gallée H, Wagnon P, Marinoni A, Jacobi HW (2014) Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations. Atmos Chem Phys 14:4237–4249

    Article  CAS  Google Scholar 

  • Menon S, Koch D, Beig G, Sahu S, Fasullo J, Orlikowski D (2010) Black carbon aerosols and the third polar ice cap. Atmos Chem Phys 10:4559–4571

    Article  CAS  Google Scholar 

  • Ming J, Xiao C, Cachier H, Qin D, Qin X, Li Z, Pu J (2009) Black carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. J Atmos Res 92:114–123

    Article  CAS  Google Scholar 

  • Ming J, Xiao C, Sun JY, Kang SC, Bonasoni P (2010) Carbonaceous particles in the atmosphere and precipitation of the Nam Co region, central Tibet. J Environ Sci 22:1748–1756

    Article  CAS  Google Scholar 

  • Ming J, Wang P, Zhao S, Chen P (2013a) Disturbance of light-absorbing aerosols on the albedo in a winter snowpack of Central Tibet. J Environ Sci 25:1601–1607

    Article  Google Scholar 

  • Ming J, Xiao C, Du Z, Yang X (2013b) An overview of black carbon deposition in High Asia glaciers and its impacts on radiation balance. Adv Water Resour 55:80–87

    Article  CAS  Google Scholar 

  • Ming J, Wang Y, Du Z, Zhang T, Guo W, Xiao C, Xu X, Ding M, Zhang D, Yang W (2015) Widespread albedo decreasing and induced melting of Himalayan snow and ice in the early 21st century. PLoS One 10(6):e0126235

    Article  CAS  Google Scholar 

  • Ming J, Xiao C, Wang F, Li Z, Li Y (2016) Grey Tienshan Urumqi Glacier No. 1 and light-absorbing impurities. Environ Sci Pollut R 23:9549–9558

    Article  CAS  Google Scholar 

  • Mishra R (2014) Compilation of a monograph on mass balance studies carried out by GSI in North-West Himalaya. (Technical GSI Report Item No. GL/NR/HQ/2013/025), Geological Survey of India.

  • Nair VS, Moorthy KK, Alappattu DP, Kunhikrishnan PK, George S, Mair PR, Babu SS, Abish B, Satheesh SK, Tripathi SN, Niranjan K, Madhavan BL, Srikant V, Dutt CBS, Badarinath KVS, Reddy RR (2007) Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): impacts of local boundary layer processes and long-range transport. J Geophys Res:112–D13205

  • NEERI (2012) Report: Study of Rohtang Pass. Sponsored by Himachal Pradesh Pollution Control Board, India

    Google Scholar 

  • Ogren JA, Charlson RJ, Ogren BJA, Charlson RJ (2017) Elemental carbon in the atmosphere: cycle and lifetime. Tellus Ser B Chem Phys Meteorol 35:241–254

    Article  Google Scholar 

  • Painter TH, Deems JS, Belnap AF, Landry CC, Udall B (2010) Response of Colorado River runoff to dust radiative forcing in snow. Proc Natl Acad Sci U S A 107(40):17125–17130

    Article  Google Scholar 

  • Painter TH, Skiles SM, Deems JS, Bryant AC, Landry CC (2012) Dust radiative forcing in snow of the Upper Colorado River Basin: a 6 year record of energy balance, radiation, and dust concentrations. J Water Resour Res 48:W07521

    Article  Google Scholar 

  • Painter TH, Flanner MG, Kaser G, Marzeion B, VanCuren RA, Abdalati W (2013) End of the Little Ice Age in the Alps forced by industrial black carbon. Proc Natl Acad Sci U S A 110:15216–15221

    Article  Google Scholar 

  • Qian Y, Flanner MG, Leung LR, Wang W (2011) Sensitivity studies of the impacts of Tibetan Plateau snowpack pollution on the Asian hydrologic cycle and monsoon climate. J Atmos Chem Phy 11:1929–1948

    Article  CAS  Google Scholar 

  • Qian Y, Wang H, Zhang R, Flanner MG, Rasch PJ (2014) A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China. Environ Res Lett 9:064001

    Article  Google Scholar 

  • Raatikainen T, Brus D, Hooda RK, Hyvärinen AP, Asmi E, Sharma VP, Arola A, Lihavainen H (2017) Size-selected black carbon mass distributions and mixing state in polluted and clean environments of northern India. Atmos Chem Phys 17:371–383

    Article  CAS  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227

    Article  CAS  Google Scholar 

  • Rhodes J, Armstrong RL, Warren S (1987) Mode of formation of “ablation hollows” controlled by dirt content of snow. J Glaciol 33(114):135–139

    Article  Google Scholar 

  • Schmale J, Flanner M, Kang S, Sprenger M, Zhang Q, Guo J, Li Y, Schwikowski M, Farinotti D (2017) Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon. Sci Rep-UK 7:40501

    Article  CAS  Google Scholar 

  • Shekhar M, Bhardwaj A, Singh S, Ranhotra PS, Bhattacharyya A, Pal AK, Roy I, Martin-Torres FJ, Zorzano MP (2017) Himalayan glacier experienced significant mass loss during later phases of little ice age. Sci Rep-UK 7:10305

    Article  CAS  Google Scholar 

  • Sloss LL (2012) Black carbon emissions in India. CCC209. IEA Clean Coal Centre, London, p 60 (October 2012)

    Google Scholar 

  • Streets DG, Bond TC, Lee T, Jang C (2004) On the future of carbonaceous aerosol emissions. J Geophys Res 109:19

    Article  CAS  Google Scholar 

  • Tahir AA, Chevallier P, Arnaud Y, Ashraf M, Bhatti MT (2015) Snow cover trend and hydrological characteristics of the Astore River Basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region). Sci Total Environ 505:748–761

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency), Method 1669: sampling ambient water for trace metals at EPA water quality criteria level (ed. United States Environmental Protection Agency, Washington D.C., 1996).

  • Vincent C, Ramanathan AI, Wagnon P, Dobhal DP, Linda A, Berthier E, Sharma P, Arnaud Y, Azam MF, Jose PG, Gardelle J (2013) Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss. Cryosphere 7:569–582

    Article  Google Scholar 

  • Wang M, Xu B, Zhao H, Cao J, Joswiak D, Wu G, Lin S (2012) The influence of dust on quantitative measurements of black carbon in ice and snow when using a thermal optical method. J Aerosol Sci Tech 46:60–69

    Article  CAS  Google Scholar 

  • Wang X, Doherty S, Huang J (2013) Black carbon and other light-absorbing impurities in snow across Northern China. J Geophy Res-Atmos 118:1471–1492

    Article  CAS  Google Scholar 

  • Wang M, Xu B, Kaspari S, Gleixner G, Schwab VF, Zhao H, Wang H, Yao P (2015) Century-long record of black carbon in an ice core from the Eastern Pamirs: estimated contributions from biomass burning. Atmos Environ 115:79–88

    Article  CAS  Google Scholar 

  • Warren SG (1982) Optical properties of snow. Rev Geophys Space Phys 20:67–89

    Article  Google Scholar 

  • Warren S, Wiscombe W (1985) Dirty snow after nuclear war. Nature 313:467–470

    Article  CAS  Google Scholar 

  • Xin W (2014) An overview of the studies on black carbon and mineral dust deposition in snow and ice cores in East Asia. J Meteorol Res 28:354–370

    Article  Google Scholar 

  • Xu B, Yao T, Liu X, Wang N (2006) Elemental and organic carbon measurements with a two-step heating-gas chromatography system in snow samples from the Tibetan Plateau. Ann Glaciol 43:257–262

    Article  CAS  Google Scholar 

  • Xu B, Cao J, Hansen J, Yao T, Joswia DR, Wang N, Wu G, Wang M, Zhao H, Yang W, Liu X, He J (2009) Black soot and the survival of Tibetan glaciers. Proc Natl Acad Sci U S A 106:22114–22118

    Article  Google Scholar 

  • Xu Y, Ramanathan V, Washington WM (2016) Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols. Atmos Chem Phys 16:1303–1315

    Article  CAS  Google Scholar 

  • Yang S, Xu B, Cao J, Zender CS, Wang M (2015) Climate effect of black carbon aerosol in a TP glacier. Atmos Environ 111:71–78. https://doi.org/10.1016/j.atmosenv.2015.03.016

  • Yasunari TJ, Bonasoni P, Laj P, Fujita K, Vuillermoz E, Marinoni A, Cristofanelli P, Duchi R, Tartari G, Lau KM (2010) Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory-Pyramid data and snow albedo changes over Himalayan glaciers. J Atmos Chem Phy 10:6603–6615

    Article  CAS  Google Scholar 

  • Ye H, Zhang R, Shi J, Huang J, Warren SG, Fu Q (2012) Black carbon in seasonal snow across northern Xinjiang in northwestern China. Environ Res Lett 7:044002

    Article  CAS  Google Scholar 

  • Yu Y, Chen HB, Xia XA, Xu XF, Xuan YJ (2010) Comparison of surface albedo measurement with MODIS product at Namco station of Tibetan Plateau. J Plat Meteorol 29:260–267

    Google Scholar 

  • Yuan W, Xu W, Ma M, Chen S, Liu W, Cui L (2016) Improved snow cover model in terrestrial ecosystem models over the Qinghai-Tibetan Plateau. Agric For Meteorol 218–219:161–170

    Article  Google Scholar 

  • Zeeman MJ, Mauder M, Steinbrecher R, Heidbach K, Echart E, Schmid HP (2017) Reduced snow cover affects productivity of upland temperate grasslands. Agric For Meteorol 232:514–526

    Article  Google Scholar 

  • Zhang Y, Hirabayashi Y, Liu Q, Liu S (2015) Glacier runoff and its impact in a highly glacierized catchment in the southeastern Tibetan Plateau: past and future trends. J Glaciol 61:713–730

    Article  Google Scholar 

  • Zhang Y, Kang S, Sprenger M, Cong Z, Gao T, Li C, Tao S, Li X, Zhong X, Xu M, Meng W, Neupane B, Qin X, Sillanpaa M (2018) Black carbon and mineral dust in snow cover on the Third Pole. Cryosphere 12:413–431

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siby John.

Additional information

Responsible editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

Wind direction: (a) Hamta glacier; (b) Beas Kund glacier and (c) Deo Tibba glacier (DOCX 1.76 mb)

Fig. S2

Sketch of vaccum filter assembly (DOCX 537 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thind, P.S., Chandel, K.K., Sharma, S.K. et al. Light-absorbing impurities in snow of the Indian Western Himalayas: impact on snow albedo, radiative forcing, and enhanced melting. Environ Sci Pollut Res 26, 7566–7578 (2019). https://doi.org/10.1007/s11356-019-04183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04183-5

Keywords

Navigation