Steady-state modeling of the biodegradation performance of a multistage moving bed biofilm reactor (MBBR) used for on-site greywater treatment

Abstract

In this study, the Activated Sludge Model No. 3 (ASM3) was applied for the simulation of the removal of organics and nitrogen in a multistage moving bed biofilm reactor (MBBR) used for biological greywater treatment. The data related to the characterization of the greywater were collected over a period of 5 months to be investigated in the model. The reactor showed a high performance for the removal of chemical oxygen demand (COD), dissolved organic carbon (DOC), biological oxygen demand (BOD5), ammonia (NH4-N), and total nitrogen (TN) with a removal efficiency of 93%, 80.7%, 99%, 89%, and 77%, respectively. The results of modeling showed a good correlation between simulated and experimental concentrations of COD issued from different reactors of the MBBR system. The adaptability of the ASM3 model to fit other parameters such as TN, NH4-N, total suspended solids (TSS), and the dissolved oxygen (DO) was also investigated for two selected reactors: reactor (R1) and the reactor (R5). The simulation results showed an acceptable correlation regarding the evolution of the investigated parameters in R1 and R5 and in the effluent except for total nitrogen TN. The adjustment of the stoichiometric parameters led to a satisfactory simulation of TN concentrations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdel-Kader AM (2012) Studying the efficiency of grey water treatment by using rotating biological contactors system. J King Saud Univ - Eng Sci 25:89–95. https://doi.org/10.1016/j.jksues.2012.05.003

    Article  Google Scholar 

  2. Abu Ghunmi L, Zeeman G, Fayyad M, van Lier JB (2010) Grey water treatment in a series anaerobic-aerobic system for irrigation. Bioresour Technol 101:41–50. https://doi.org/10.1016/j.biortech.2009.07.056

    Article  CAS  Google Scholar 

  3. Al-hamaiedeh H, Bino M (2010) Effect of treated grey water reuse in irrigation on soil and plants. DES 256:115–119. https://doi.org/10.1016/j.desal.2010.02.004

    Article  CAS  Google Scholar 

  4. Arden S, Ma X (2018) Constructed wetlands for greywater recycle and reuse: a review. Sci Total Environ 630:587–599. https://doi.org/10.1016/j.scitotenv.2018.02.218

    Article  CAS  Google Scholar 

  5. Atanasova N, Dalmau M, Comas J, Poch M, Rodriguez-Roda I, Buttiglieri G (2017) Optimized MBR for greywater reuse systems in hotel facilities. J Environ Manag 193:503–511. https://doi.org/10.1016/j.jenvman.2017.02.041

    Article  Google Scholar 

  6. Bani-Melhem K, Al-Qodah Z, Al-Shannag M et al (2015) On the performance of real grey water treatment using a submerged membrane bioreactor system. J Memb Sci 476:40–49. https://doi.org/10.1016/j.memsci.2014.11.010

    Article  CAS  Google Scholar 

  7. Barwal A, Chaudhary R (2014) To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: a review. https://doi.org/10.1007/s11157-014-9333-7

  8. Bassin JP, Dias IN, Cao SMS, Senra E, Laranjeira Y, Dezotti M (2016) Effect of increasing organic loading rates on the performance of moving-bed biofilm reactors filled with different support media: assessing the activity of suspended and attached biomass fractions. Process Saf Environ Prot 100:131–141. https://doi.org/10.1016/j.psep.2016.01.007

    Article  CAS  Google Scholar 

  9. Berlin Senate Department for Urban Development (2008) Block 6: Integrated Water Concept – Ecological Integrated Concept. Section IV, Ministerial Affairs of Building, Berlin, Germany. https://www.stadtentwicklung.berlin.de/bauen/oekologisches_bauen/download/modellvorhaben/flyer_block6_engl.pdf. Accessed 19 Dec 2018

  10. Brdjanovic D, Meijer SCF, Lopez-Vazquez CM, Hooijmans CM, van Loosdrecht MCM (2015) Applications of Activated Sludge Models. IWA Publishing, UK

  11. Castro FD, Bassin JP, Dezotti M (2017) Treatment of a simulated textile wastewater containing the reactive Orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor: evaluating the performance, toxicity, and oxidation by-products. Environ Sci Pollut Res 24:6307–6316. https://doi.org/10.1007/s11356-016-7119-x

    Article  CAS  Google Scholar 

  12. Chen X, Kong L, Wang X (2014) Accelerated start-up of moving bed biofilm reactor by using a novel suspended carrier with porous surface. https://doi.org/10.1007/s00449-014-1266-6

  13. Chrispim MC, Nolasco MA (2016) Greywater treatment using a moving bed biofilm reactor at a university campus in Brazil. J Clean Prod 142:290–296. https://doi.org/10.1016/j.jclepro.2016.07.162

    Article  CAS  Google Scholar 

  14. Chu L, Wang J, Quan F, Xing XH, Tang L, Zhang C (2014) Modification of polyurethane foam carriers and application in a moving bed biofilm reactor. Process Biochem 49:1979–1982. https://doi.org/10.1016/j.procbio.2014.07.018

    Article  CAS  Google Scholar 

  15. Comett I, González-Martinez S, Wilderer P (2004) Treatment of leachate from the anaerobic fermentation of solid wastes using two biofilm support media. Water Sci Technol 49:287–294

    Article  CAS  Google Scholar 

  16. Di Trapani D, Mannina G, Torregrossa M, Viviani G (2008) Hybrid moving bed biofilm reactors: a pilot plant experiment. Water Sci Technol 57:1539–1545. https://doi.org/10.2166/wst.2008.219

    Article  CAS  Google Scholar 

  17. Elzeini HM, Ali AA, Nasr NF, Awad AA, Hassan AA (2017) Morphological and rheological identification of cocci lactic acid Bacteria. J Microb Biochem Technol 09:519–526. https://doi.org/10.4172/1948-5948.1000337

    Article  Google Scholar 

  18. Eriksson E, Auffarth K, Henze M, Ledin A (2002) Characteristics of grey wastewater. Urban Water 4:85–104. https://doi.org/10.1016/S1462-0758(01)00064-4

    Article  CAS  Google Scholar 

  19. Fenu A, Guglielmi G, Jimenez J, Spèrandio M, Saroj D, Lesjean B, Brepols C, Thoeye C, Nopens I (2010) Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: a critical review with special regard to MBR specificities. Water Res 44:4272–4294. https://doi.org/10.1016/j.watres.2010.06.007

    Article  CAS  Google Scholar 

  20. Ferrai M, Guglielmi G, Andreottola G (2010) Modelling respirometric tests for the assessment of kinetic and stoichiometric parameters on MBBR biofilm for municipal wastewater treatment. Environ Model Softw 25:626–632. https://doi.org/10.1016/j.envsoft.2009.05.005

    Article  Google Scholar 

  21. Gu Q, Sun T, Wu G, Li M, Qiu W (2014) Influence of carrier filling ratio on the performance of moving bed biofilm reactor in treating coking wastewater. Bioresour Technol 166:72–78. https://doi.org/10.1016/j.biortech.2014.05.026

    Article  CAS  Google Scholar 

  22. Gujer W (2000) Activated Sludge Models ASM1, ASM2, ASM2d AND ASM3, IWA task group on mathematical modelling for design and operation of biologicalwastewater treatment

  23. Henze M, Van Loosdrecht MCM, Ekama GA, Brdjanovic D (2008) Biological wastewater treatment: principles, Modelling and Design. IWA Publishing

  24. Hernández Leal L, Temmink H, Zeeman G, Buisman CJN (2010) Bioflocculation of grey water for improved energy recovery within decentralized sanitation concepts. Bioresour Technol 101:9065–9070. https://doi.org/10.1016/j.biortech.2010.07.047

    Article  CAS  Google Scholar 

  25. Hernández Leal L, Temmink H, Zeeman G, Buisman CJN (2011) Characterization and anaerobic biodegradability of grey water. Desalination 270:111–115. https://doi.org/10.1016/j.desal.2010.11.029

    Article  CAS  Google Scholar 

  26. Hocaoglu SM, Atasoy E, Baban A, Orhon D (2013) Modeling biodegradation characteristics of grey water in membrane bioreactor. J MembR Sci 429:139–146. https://doi.org/10.1016/j.memsci.2012.11.012

    Article  CAS  Google Scholar 

  27. Kaelin D, Manser R, Rieger L, Eugster J, Rottermann K, Siegrist H (2009) Extension of ASM3 for two-step nitrification and denitrification and its calibration and validation with batch tests and pilot scale data. Water Res 43:1680–1692. https://doi.org/10.1016/j.watres.2008.12.039

    Article  CAS  Google Scholar 

  28. Lamine M, Bousselmi L, Ghrabi A (2007) Biological treatment of grey water using sequencing batch reactor. Desalination 215:127–132. https://doi.org/10.1016/j.desal.2006.11.017

    Article  CAS  Google Scholar 

  29. Leyva-Díaz JC, Calderón K, Rodríguez FA, González-López J, Hontoria E, Poyatos JM (2013a) Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal. Biochem Eng J 77:28–40. https://doi.org/10.1016/j.bej.2013.04.023

    Article  CAS  Google Scholar 

  30. Leyva-Díaz JC, Martín-pascual J, González-lópez J, Hontoria E (2013b) Effects of scale-up on a hybrid moving bed biofilm reactor-membrane bioreactor for treating urban wastewater. Chem Eng Sci 104:808–816. https://doi.org/10.1016/j.ces.2013.10.004

    Article  CAS  Google Scholar 

  31. Leyva-Díaz JC, González-Martínez A, González-López J, Muñío MM, Poyatos JM (2015) Kinetic modeling and microbiological study of two-step nitrification in a membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor for wastewater treatment. Chem Eng J 259:692–702. https://doi.org/10.1016/j.cej.2014.07.136

    Article  CAS  Google Scholar 

  32. Li H-Q, Han H-J, Du M-A, Wang W (2011) Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor. Bioresour Technol 102:4667–4673. https://doi.org/10.1016/j.biortech.2011.01.029

    Article  CAS  Google Scholar 

  33. Mannina G, Di Trapani D, Torregrossa M, Viviani G (2007) Modelling of hybrid moving bed biofilm reactors: a pilot plant experiment. Water Sci Technol 55:237–246. https://doi.org/10.2166/wst.2007.264

    Article  CAS  Google Scholar 

  34. Moges ME, Todt D, Eregno FE, Heistad A (2017) Performance study of biofilter system for on-site greywater treatment at cottages and small households. Ecol Eng 105:118–124. https://doi.org/10.1016/j.ecoleng.2017.04.060

    Article  Google Scholar 

  35. Nguyen TT, Ngo HH, Guo W, Johnston A, Listowski A (2010) Effects of sponge size and type on the performance of an up-flow sponge bioreactor in primary treated sewage effluent treatment. Bioresour Technol 101:1416–1420. https://doi.org/10.1016/j.biortech.2009.07.081

    Article  CAS  Google Scholar 

  36. Nolde E (1995) Greywater recycling systems in Germany—results, experiences and guidelines. pp 203–210

  37. Nolde E (1999) Greywater reuse systems for toilet flushing in multi-storey buildings-over ten years experience in Berlin. Urban Water 275–284

  38. Ødegaard H, Gisvold B, Strickland J (2000) The influence of carrier size and shape in the moving bed biofilm process. Water Sci Technol 41:383–391. https://doi.org/10.1016/j.bej.2017.05.005

    Article  CAS  Google Scholar 

  39. Plattes M, Henry E, Schosseler PM, Weidenhaupt A (2006) Modelling and dynamic simulation of a moving bed bioreactor for the treatment of municipal wastewater. Biochem Eng J 32:61–68. https://doi.org/10.1016/j.bej.2006.07.009

    Article  CAS  Google Scholar 

  40. Plattes M, Fiorelli D, Gillé S, Girard C, Henry E, Minette F, O’Nagy O, Schosseler PM (2007) Modelling and dynamic simulation of a moving bed bioreactor using respirometry for the estimation of kinetic parameters. Biochem Eng J 33:253–259. https://doi.org/10.1016/j.bej.2006.11.006

    Article  CAS  Google Scholar 

  41. Revilla M, Galán B, Viguri JR (2016) An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis. Water Res 98:84–97. https://doi.org/10.1016/j.watres.2016.04.003

    Article  CAS  Google Scholar 

  42. Roeleveld PJ, Van Loosdrecht MCM (2002) Experience with guidelines for wastewater characterisation in the Netherlands. Water Sci Technol 45:77–87

    Article  CAS  Google Scholar 

  43. Saidi A, Masmoudi K, Nolde E et al (2017) Organic matter degradation in a greywater recycling system using a multistage moving bed biofilm reactor (MBBR). Water Sci Technol. https://doi.org/10.2166/wst.2017.499

  44. Scheumann R (2010) Greywater treatment with a submerged membrane sequencing batch reactor. Dissertation, Technical University of Berlin

  45. Sin G, Van Hulle SWH, De Pauw DJW et al (2005) A critical comparison of systematic calibration protocols for activated sludge models: a SWOT analysis. Water Res 39:2459–2474. https://doi.org/10.1016/j.watres.2005.05.006

    Article  CAS  Google Scholar 

  46. Takács I, Bye CM, Chapman K, Dold PL, Fairlamb PM, Jones RM (2007) A biofilm model for engineering design. Water Sci Technol 55:329–336. https://doi.org/10.2166/wst.2007.274

    Article  CAS  Google Scholar 

  47. Vitanza R, Colussi I, Cortesi A, Gallo V (2016) Implementing a respirometry-based model into BioWin software to simulate wastewater treatment plant operations. J Water Process Eng 9:267–275. https://doi.org/10.1016/j.jwpe.2015.02.007

    Article  Google Scholar 

  48. Vuppaladadiyam AK, Merayo N, Blanco A, Hou J, Dionysiou DD, Zhao M (2018) Simulation study on comparison of algal treatment to conventional biological processes for greywater treatment. Algal Res 35:106–114. https://doi.org/10.1016/j.algal.2018.08.021

    Article  Google Scholar 

  49. Yuan Q, Wang H, Hang Q, Deng Y, Liu K, Li C, Zheng S (2015) Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent. Environ Sci Pollut Res 22:13970–13979. https://doi.org/10.1007/s11356-015-4546-z

    Article  CAS  Google Scholar 

  50. Zeng M, Soric A, Roche N (2013) Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions. Bioresour Technol 144:202–209. https://doi.org/10.1016/j.biortech.2013.06.111

    Article  CAS  Google Scholar 

  51. Zinatizadeh AAL, Ghaytooli E (2015) Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (MBBR): process modeling and optimization. J Taiwan Inst Chem Eng 53:98–111. https://doi.org/10.1016/j.jtice.2015.02.034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was developed in the framework of sandwich thesis between the Technical University of Berlin and the University of Carthage in Tunisia. The authors wish to thank Dr. Jens Alex and Michael Ogurek for technical support by ifak Institut fuer Automation und Kommunikation e.V. Magdeburg-Germany

Funding

The study was financially supported by the Ministry of Higher Education and Scientific Research, Tunisia, and the German Academic Exchange Service (DAAD).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Latifa Bousselmi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Masmoudi Jabri, K., Fiedler, T., Saidi, A. et al. Steady-state modeling of the biodegradation performance of a multistage moving bed biofilm reactor (MBBR) used for on-site greywater treatment. Environ Sci Pollut Res 26, 19047–19062 (2019). https://doi.org/10.1007/s11356-018-3984-9

Download citation

Keywords

  • Modeling
  • Moving bed biofilm reactor (MBBR)
  • Biocarriers
  • Activated sludge model
  • Greywater treatment