Investigate the impact of local iron–steel industrial emission on atmospheric mercury concentration in Yangtze River Delta, China

Abstract

Mercury is a global neurotoxic pollutant, which can be globally transported and bioaccumulated in the food chain. Iron–steel production is one of the most significant sources of anthropogenic atmospheric mercury emission, while information on this source is scarce. Hourly gaseous elemental mercury (GEM) and particle bound mercury (PBM) were studied inside (IP) and at the boundary (BP) of a typical iron–steel plant in the Yangtze River Delta (YRD), China from September 2016 to August 2017. The GEM concentrations were 0.97–503.1 and 0.05–112.6 ng/m3 at the IP and BP sites, respectively, while PBM concentrations were one to four orders of magnitude higher than urban and suburban ambient levels. Several lines of evidences indicated that PBM was mainly originated from the iron–steel manufacturing process, especially from sintering and coke-making processes in this iron–steel plant. However, a combined emission effect contributed to GEM variation. The receptor model of positive matrix factorization (PMF) showed that local direct emissions (coal combustion, industrial activity, vehicle exhaust, and secondary evaporation from polluted soil) contributed 51.3% of the total GEM concentration variation. Potential source contribution function (PSCF) and concentration weighted trajectory (CWT) models clearly showed that air masses moving from areas surrounding YRD had the highest concentrations of atmospheric mercury. These results provided evidence that iron–steel manufacturing emissions have a considerable effect on regional atmospheric mercury concentrations, especially PBM.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Beckers F, Rinklebe J (2017) Cycling of mercury in the environment: sources, fate, and human health implications: a review. Critical reviews in environ. Sci Technol 47(9):693–794. https://doi.org/10.1080/10643389.2017.1326277

  2. Brooks S, Luke W, Cohen M, Kelly P, Lefer B, Rappenglück B (2010) Mercury species measured atop the moody tower TRAMP site, Houston, Texas. Atmos Environ 44:4045–4055. https://doi.org/10.1016/j.atmosenv.2009.02.009

    Article  CAS  Google Scholar 

  3. Cairns E, Tharumakulasingam K, Athar M, Yousaf M, Cheng I, Huang Y, Lu J, Yap D (2011) Source, concentration, and distribution of elemental mercury in the atmosphere in Toronto, Canada. Environ Pollut 159:2003–2008. https://doi.org/10.1016/j.envpol.2010.12.006

    Article  CAS  Google Scholar 

  4. Castagna J, Bencardino M, D'Amore F, Esposito G, Pirrone N, Sprovieri F (2018) Atmospheric mercury species measurements across the Western Mediterranean region: behaviour and variability during a 2015 research cruise campaign. Atmos Environ 173:108–126. https://doi.org/10.1016/j.atmosenv.2017.10.045

    Article  CAS  Google Scholar 

  5. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983. https://doi.org/10.1021/es305071v

    Article  CAS  Google Scholar 

  6. Dumanoglu Y, Kara M, Altiok H, Odabasi M, Elbir T, Bayram A (2014) Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region. Atmos Environ 98:168–178. https://doi.org/10.1016/j.atmosenv.2014.08.048

    Article  CAS  Google Scholar 

  7. Eckley CS, Parsons MT, Mintz R, Lapalme M, Mazur M, Tordon R, Elleman R, Graydon JA, Blanchard P, St Louis V (2013) Impact of closing Canada's largest point–source of mercury emissions on local atmospheric mercury concentrations. Environ Sci Technol 47:10339–10348. https://doi.org/10.1021/es401352n

    CAS  Article  Google Scholar 

  8. Eckley CS, Blanchard P, Mclennan D, Mintz R, Sekela M (2015) Soil–air mercury flux near a large industrial emission source before and after closure (Flin Flon, Manitoba, Canada). Environ Sci Technol 49:9750. https://doi.org/10.1021/es401352n

    Article  CAS  Google Scholar 

  9. Esbrí JM, Martínez-Coronado A, Higueras PL (2016) Temporal variations in gaseous elemental mercury concentrations at a contaminated site: Main factors affecting nocturnal maxima in daily cycles. Atmos Environ 125:8–14. https://doi.org/10.1016/j.atmosenv.2015.10.064

    Article  CAS  Google Scholar 

  10. Fu X, Feng X, Qiu G, Shang L, Zhang H (2011) Speciated atmospheric mercury and its potential source in Guiyang, China. Atmos Environ 45:4205–4212. https://doi.org/10.1016/j.atmosenv.2011.05.012

    Article  CAS  Google Scholar 

  11. Fukuda N, Takaoka M, Doumoto S, Oshita K, Morisawa S, Mizuno T (2011) Mercury emission and behavior in primary ferrous metal production. Atmos Environ 45:3685–3691. https://doi.org/10.1016/j.atmosenv.2011.04.038

    Article  CAS  Google Scholar 

  12. Gibb H, O'Leary KG (2014) Mercury exposure and health impacts among individuals in the artisanal and small–scale gold mining community: a comprehensive review. Environ Health Perspect 122:667–672. https://doi.org/10.1289/ehp.1307864

    Article  CAS  Google Scholar 

  13. Gonzalez-Raymat H et al (2017) Elemental mercury: its unique properties affect its behavior and fate in the environment. Environ Pollut 229:69–86. https://doi.org/10.1016/j.envpol.2017.04.101

    Article  CAS  Google Scholar 

  14. Gratz LE, Keeler GJ, Marsik FJ, Barres JA, Dvonch JT (2013) Atmospheric transport of speciated mercury across southern Lake Michigan: Influence from emission sources in the Chicago/Gary urban area. Sci. Total Environ. 448, 84–95. https://doi.org/10.1016/j.scitotenv.2012.08.076

  15. Han D et al (2018a) Particulate mercury in ambient air in Shanghai, China: Size–specific distribution, gas–particle partitioning, and association with carbonaceous composition. Environ Pollut 238:543–553. https://doi.org/10.1016/j.envpol.2018.03.088

    Article  CAS  Google Scholar 

  16. Han D, Fu Q, Gao S, Xu H, Liang S, Cheng P, Chen X, Zhou Y, Cheng J (2018b) Non–polar organic compounds in aerosols in a typical city of eastern China: size distribution, gas–particle partitioning and tracer for PM2.5 source apportionment. Atmos Chem Phys 18:9375–9391. https://doi.org/10.5194/acp-2017-908

    Article  CAS  Google Scholar 

  17. Hong Y, Chen J, Deng J, Tong L, Xu L, Niu Z, Yin L, Chen Y, Hong Z (2016) Pattern of atmospheric mercury speciation during episodes of elevated PM2.5 levels in a coastal city in the Yangtze River Delta, China. Environ Pollu 218:259–268. https://doi.org/10.1016/j.envpol.2016.06.073

    Article  CAS  Google Scholar 

  18. Huang J, Hopke PK, Choi HD, Laing JR, Cui H, Zananski TJ, Chandrasekaran SR, Rattigan OV, Holsen TM (2011) Mercury (hg) emissions from domestic biomass combustion for space heating. Chemosphere 84:1694–1699. https://doi.org/10.1016/j.chemosphere.2011.04.078

    Article  CAS  Google Scholar 

  19. Huang J, Liu CK, Huang CS, Fang GC (2012) Atmospheric mercury pollution at an urban site in Central Taiwan: mercury emission sources at ground level. Chemosphere 87:579–585. https://doi.org/10.1016/j.chemosphere.2012.01.011

    Article  CAS  Google Scholar 

  20. Landis MS, Lewis CW, Stevens RK, Keeler GJ, Dvonch JT, Tremblay RT (2007) Ft. McHenry tunnel study: source profiles and mercury emissions from diesel and gasoline powered vehicles. Atmos Environ 41:8711–8724. https://doi.org/10.1016/j.atmosenv.2007.07.028

    Article  CAS  Google Scholar 

  21. Lynam MM, Dvonch JT, Barres JA, Landis MS, Kamal AS (2016) Investigating the impact of local urban sources on total atmospheric mercury wet deposition in Cleveland, Ohio, Usa. Atmos Environ 127:262–271. https://doi.org/10.1016/j.atmosenv.2015.12.048

    Article  CAS  Google Scholar 

  22. Ma M, Wang D, Du H, Sun T, Zhao Z, Wei S (2015) Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, Southwest China. Environ Sci Pollut Res 22:20007–20018. https://doi.org/10.1007/s11356-015-5152-9

    Article  CAS  Google Scholar 

  23. Marumoto K, Hayashi M, Takami A (2015) Atmospheric mercury concentrations at two sites in the Kyushu Islands, Japan, and evidence of long–range transport from East Asia. Atmos Environ 117:147–155. https://doi.org/10.1016/j.atmosenv.2015.07.019

    Article  CAS  Google Scholar 

  24. Mason R, Pirrone N (2009) Mercury fate and transport in the global atmosphere. Springer, USA. https://doi.org/10.1007/978-0-387-93958-2

    Google Scholar 

  25. Peng BX, Dai-she WU (2014) Distribution and content of bromine in Chinese coals. J Fuel Chem Technol 42:769–773. https://doi.org/10.1016/S1872-5813(14)60034-7

    Article  CAS  Google Scholar 

  26. Pirrone N et al (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys Dis 10:5951–5964. https://doi.org/10.1007/978-0-387-93958-2_1

    Article  CAS  Google Scholar 

  27. Timonen H, Ambrose JL, Jaffe DA (2013) Oxidation of elemental hg in anthropogenic and marine airmasses. Atmos Chem Phys 13:2827–2836. https://doi.org/10.5194/acp-13-2827-201

    Article  Google Scholar 

  28. Tomiyasu T, Kodamatani H, Imura R, Matsuyama A, Miyamoto J, Akagi H, Kocman D, Kotnik J, Fajon V, Horvat M (2017) The dynamics of mercury near Idrija mercury mine, Slovenia: horizontal and vertical distributions of total, methyl, and ethyl mercury concentrations in soils. Chemosphere 184:244–252. https://doi.org/10.1016/j.chemosphere.2017.05.123

    Article  CAS  Google Scholar 

  29. Wang S, Feng X, Qiu G, Shang L, Li P, Wei Z (2007) Mercury concentrations and air/soil fluxes in Wuchuan mercury mining district, Guizhou province, China. Atmos Environ 41:5984–5993. https://doi.org/10.1016/j.atmosenv.2007.03.013

    Article  CAS  Google Scholar 

  30. Wang YQ, Zhang XY, Draxler RR (2009) TrajStat: GIS–based software that uses various trajectory statistical analysis methods to identify potential sources from long–term air pollution measurement data. Environ Model Softw 24:938–939. https://doi.org/10.1016/j.envsoft.2009.01.004

    Article  Google Scholar 

  31. Wang SW, Zhang Q, Streets DG, He KB (2012) Growth in NOx emissions from power plants in China: bottom–up estimates and satellite observations. Atmos Chem Phys 12:45–91. https://doi.org/10.5194/acp-12-4429-2012

    Article  CAS  Google Scholar 

  32. Williams CR (2011) Mercury concentrations at a historically mercury–contaminated site in KwaZulu–Natal (South Africa). Environ Sci Pollut Res 18:1079–1089. https://doi.org/10.1007/s11356-011-0458-8

    Article  CAS  Google Scholar 

  33. Wu Q, Wang S, Li G, Liang S, Lin CJ, Wang Y, Cai S, Liu K, Hao J (2016) Temporal trend and spatial distribution of Speciated atmospheric mercury emissions in China during 1978–2014. Environ Sci Technol 50:13428. https://doi.org/10.1021/acs.est.6b04308

    Article  CAS  Google Scholar 

  34. Wu Q, Gao W, Wang S, Hao J (2017) Updated atmospheric speciated mercury emissions from iron and steel production in China during 2000–2015. Atmos Chem Phys 17:1–28. https://doi.org/10.5194/acp-2017-87

    Article  Google Scholar 

  35. Xu L, Chen J, Yang L, Niu Z, Tong L, Yin L, Chen Y (2015) Characteristics and sources of atmospheric mercury speciation in a coastal city, Xiamen, China. Chemosphere 119:530–539. https://doi.org/10.1016/j.chemosphere.2014.07.024

    Article  CAS  Google Scholar 

  36. Xu W, Shao M, Yang Y, Liu R, Wu Y, Zhu T (2017) Mercury emission from sintering process in the iron and steel industry of China. Fuel Process Technol 159:340–344. https://doi.org/10.1016/j.fuproc.2017.01.033

    Article  CAS  Google Scholar 

  37. Xue Y, Shen R, Ni S, Xiao D, Song M (2015) Effects of sintering atmosphere on the mechanical properties of Al–Fe particle–reinforced Al–based composites. J Mater Eng Perform 24:1890–1896. https://doi.org/10.1016/j.jeurceramsoc.2003.10.047

    Article  CAS  Google Scholar 

  38. Yue D, Zhong L, Shen J, Zhang T, Zhou Y, Zeng L, Dong H (2016) Pollution properties of atmospheric HNO_2 and its effect on OH radical formation in the PRD region in autumn. Environ Sci Technol 39(02):162–166

  39. Zhang L, Wang S, Wang L, Wu Y, Duan L, Wu Q, Wang F, Yang M, Yang H, Hao J, Liu X (2015) Updated emission inventories for Speciated atmospheric mercury from anthropogenic sources in China. Environ Sci Technol 49:3185–3194. https://doi.org/10.1021/es504840m

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported financially by the National Natural Science Foundation of China (No. 21577090 and No. 21777094) and National Science–Technology Support Plan Project (No. 2014BAC22B07).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinping Cheng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOC 1803 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, D., Fu, Q., Gao, S. et al. Investigate the impact of local iron–steel industrial emission on atmospheric mercury concentration in Yangtze River Delta, China. Environ Sci Pollut Res 26, 5862–5872 (2019). https://doi.org/10.1007/s11356-018-3978-7

Download citation

Keywords

  • Mercury
  • Iron–steel industry
  • Yangtze River Delta (YRD)
  • Source apportionment
  • Potential source contribution function