Abstract
The changes of particles and organic pollutants in indoor atmospheres as consequence of vaping with electronic cigarettes have been analyzed. Changes in the composition of volatile organic compounds (VOCs) in exhaled breath of non-smoking volunteers present in the vaping environments have also been studied. The exposure experiments involved non-vaping (n = 5) and vaping (n = 5) volunteers staying 12 h together in a room (54 m2) without external ventilation. The same experiment was repeated without vaping for comparison. Changes in the distributions of particles in the 8–400 nm range were observed, involving losses of nucleation-mode particles (below 20 nm) and increases of coagulation processes leading to larger size particles. In quantitative terms, vaping involved doubling the indoor concentrations of particles smaller than 10 μm, 5 μm, and 1 μm observed during no vaping. The increase of particle mass concentrations was probably produced from bulk ingredients of the e-liquid exhaled by the e-cigarette users. Black carbon concentrations in the indoor and outdoor air were similar in the presence and absence of electronic cigarette emissions. Changes in the qualitative composition of PAHs were observed when comparing vaping and non-vaping days. The nicotine concentrations were examined separately in the gas and in the particulate phases showing that most of the differences between both days were recorded in the former. The particulate phase should therefore be included in nicotine monitoring during vaping (and smoking). The concentration increases of nicotine and formaldehyde were small when compared with those described in other studies of indoor atmospheres or health regulatory thresholds. No significant changes were observed when comparing the concentrations of exhaled breath in vaping and no vaping days. Even the exhaled breath nicotine concentrations in both conditions were similar. As expected, toluene, xylenes, benzene, ethylbenzene, and naphthalene did not show increases in the vaping days since combustion was not involved.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abidin ZN, Abidin ZE, Zulkifli A, Karuppiah K, Norkhadijah S, Ismail S, Siddiq A (2017) Electronic cigarettes and indoor air quality: a review of studies using human volunteers. Rev Environ Health 32:235–244
Andreae MO (2013) The aerosol nucleation puzzle. Science 339:911–912
Baek SO, Kim YS, Perry R (1997) Indoor air quality in homes, offices and restaurants in Korean urban areas—indoor/outdoor relationships. Atmos Environ 31:529–544
Ballbè M, Martínez-Sánchez JM, Sureda X, Fu M, Pérez-Ortuño R, Pascual JA, Saltó E, Fernández E (2017) Cigarettes vs. e-cigarettes: passive exposure at home measured by means of airborne marker and biomarkers. Environ Res 135:76–80
Batterman S, Jia CR, Hatzivasilis G (2007) Migration of volatile organic compounds from attached garages to residences: a major exposure source. Environ Res 104:224–240
Bekanntmachung des Umweltbundesamtes (2008) Vergleichswerte für flüchtige organische Verbindungen (VOC und Aldehyde) in der Innenraumluft von Haushalten in Deutschland Ergebnisse des repräsentativen Kinder-Umwelt-Surveys (KUS) des Umweltbundesamtes. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 51:109–112
Bolte G, Heitmann D, Kiranoglu M, Schierl R, Diemer J, Koerner W, Fromme H (2008) Exposure to environmental tobacco smoke in German restaurants, pubs and discotheques. J Expo Sci Environ Epidemiol 18:262–271
Chen R, Aherrera A, Isichei C, Olmedo P, Jarmul S, Cohen JE, Navas-Acien A, Rule AM (2018) Assessment of indoor air quality at an electronic cigarette (vaping) convention. J Expo Sci Environ Epidemiol 28:522–529. https://doi.org/10.1038/s41370-017-0005-x
Chuang JC, Mack GA, Kuhlman MR, Wilson NK (1991) Polycyclic aromatic-hydrocarbons and their derivatives in indoor and outdoor air in an 8-home study. Atmos Environ 25:369–380
Colard S, O’Connell G, Verron T, Cahours X, Pritchard JD (2015) Electronic cigarettes and indoor air quality: a simple approach to modeling potential bystander exposures to nicotine. Int J Environ Res Public Health 12:282–299
Czogala J, Goniewicz ML, Fidelus B, Zielinska-Danch W, Travers MJ, Sobczak A (2014) Secondhand exposure to vapors from electronic cigarettes. Nicotine Tob Res 16:655–662
Dodson RE, Levy JI, Sprengler JD, Shine JP, Bennett DH (2008) Influence of basement, garages and common hallways on indoor residential volatile organic compound concentrations. Atmos Environ 42:1569–1581
Edwards RD, Schweizer C, Jantunen M, Lai HK, Bayer-Oglesby L, Katsouyanni K, Nieuwenhuijsen M, Saarela K, Sram R, Künzli N (2005) Personal exposures to VOC in the upper end of the distribution—relationships to indoor, outdoor and workplace concentrations. Atmos Environ 39:2299–2307
EU. Directive 2008/50/EU of the European Parliament and of the Council of May 2008
EU. Directive 2014/40/EU of the European Parliament and of the Council of 3rd of April 2014
European Commission (2005) Critical appraisal of the setting and implementation of indoor exposure limits in the EU. Brussels, European Commission, Joint Research Centre. http://ec.europa.eu/health/ph_projects/2002/pollution/fp_pollution_2002_frep_02.pdf. Accessed 14 Dec 2018
Fernandez E, Ballbe M, Sureda X, Fu M, Salto E, Martinez-Sanchez JM (2015) Particulate matter from electronic cigarettes and conventional cigarettes: a systematic review and observational study. Curr Environ Health Rep 2:423–429
Fischer PH, Hoek G, van Reeuwijk H, Briggs DJ, Lebret E, van Wijnen JH, Kingham S, Elliot PE (2000) Traffic-related differences in outdoor and indoor concentrations of particles and volatile organic compounds in Amsterdam. Atmos Environ 34:3713–3722
Fontal M, van Drooge BL, Lopez JF, Fernandez P, Grimalt JO (2015) Broad spectrum analysis of polar and apolar organic compounds in submicron atmospheric particles. J Chromatrogr A 1404:28–38
Fromme H, Lahrz T, Piloty M, Gebhardt H, Oddoy A, Rüden H (2004) Polycyclic aromatic hydrocarbons inside and outside of apartments in an urban area. Sci Total Environ 326:143–149
Fromme H, Heitmann D, Dietrich S (2008) Air quality in schools—classroom levels of carbon dioxide (CO2), volatile organic compounds (VOC), aldehydes, endotoxins and cat allergen. Gesundheitswesen 70:88–97
Guo H, Lee SC, Chan LY, Li WM (2004) Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ Res 94:57–66
Gustafson P, Östman C, Sällsten G (2008) Indoor levels of polycyclic aromatic hydrocarbons in homes with or without wood burning for heating. Environ Sci Technol 42:5074–5080
Harrison RM, Delgado-Saborit JM, Baker SJ, Aquilina N, Meddings C, Harrad S, Matthews I, Vardoulakis S, Anderson HR (2009) Measurement and modeling of exposure to selected air toxics for health effects studies and verification by biomarkers. Boston, MA, Health Effects Institute (HEI Research Report 143). https://europepmc.org/abstract/med/19999825. Accessed 14 Dec 2018
Jantunen M, Hänninen O, Katsouyanni K, Knöppel H, Künzli N, Lebret E, Maroni M, Saarela K, Sram RJ, Zmirou D (1998) Air pollution exposure in European cities: the EXPOLIS study. J Expo Anal Environ Epidemiol 8:495–518
Jia CR, Batterman S, Godwin C (2008) VOCs in industrial, urban and suburban neighbourhoods—part 1: indoor and outdoor concentrations, variation and risk drivers. Atmos Environ 42:2083–2100
Jurvelin J, Vartiainen M, Jantunen M, Pasanen P (2001) Personal exposure levels and microenvironmental concentrations of formaldehyde and acetaldehyde in Helsinki metropolitan area, Finland. J Air Waste Manag Assoc 51:17–24
Kauneliene V, Meisutovic-Akhtarieva M, Martuzevicius D (2018) A review of the impacts of tobacco heating system on indoor air quality versus conventional pollution sources. Chemosphere 206:568–578
Kim YH, Kim KH (2015) A novel method to quantify the emission and conversion of VOCs in the smoking of electronic cigarettes. Sci Rep 5:16383
Kim YM, Harrad S, Harrison RM (2001) Concentrations and sources of VOCs in urban domestic and public microenvironments. Environ Sci Technol 35:997–1004
Kingham S, Briggs D, Elliot P, Fischer P, Lebret E (2000) Spatial variations in the concentrations of traffic-related pollutants in indoor and outdoor air in Huddersfield, England. Atmos Environ 34:905–916
Kirchner S, Arenes JF, Cochet C, Derbez M, Duboudin C, Elias P, Gregoire A, Jédor B, Lucas JP, Pasquier N, Pigneret M, Ramalho O (2007) Etat de la qualité de l’air dans les logements français. Environ Risq Santé 6:259–269
Kotzias D, Geiss O, Tirendi S, Barrero-Moreno J, Reina V, Gotti A, Cimino G, Marafante E, Sarigiannis D, Casati B (2009) Exposure to multiple air contaminants in public buildings, schools and kindergartens: the European indoor air monitoring and exposure assessment (AIRMEX) study. Fres Environ Bull 18:670–681
Kraev TA, Adamkiewicz G, Hammond SK, Sprengler JD (2009) Indoor concentrations of nicotine in low-income, multi-unit housing: associations with smoking behaviours and housing characteristics. Tob Control 18:438–444
Kulmala M, Kerminen VM (2008) On the formation and growth of atmospheric nanoparticles. Atmos Res 90(2–4):132–150
Leung PL, Harrison PM (1998) Evaluation of personal exposure to monoaromatic hydrocarbons. Occup Environ Med 55:249–257
Logue J, Sleiman M, Montesinos VN, Russell ML, Litter MI, Benowitz NL, Gundel LA, Destaillats H (2017) Emissions from electronic cigarettes: assessing vapers´ intake of toxic compounds, secondhand exposure, and associated health impacts. Environ Sci Technol 51:9271–9279
Long GA (2014) Comparison of select analytes in exhaled aerosol from e-cigarettes with exhaled smoke from a conventional cigarette and exhaled breaths. Int J Environ Res Public Health 11:11177–11191
Madureira J, Paciência I, Rufo J, Ramos E, Barros H, Teixeira JP, de Oliveira Fernandes E (2015) Indoor air quality in schools and its relationship with children’s respiratory symptoms. Atmos Environ 118:145–156
Maloney JC, Thompson MK, Oldham MJ, Stiff CL, Lilly PD, Patskan GJ, Shafer KH, Sarkar MA (2015) Insights from two industrial hygiene pilot e-cigarette passive vaping studies. J Occup Environ Hyg 13:275–283
Marco E, Grimalt JO (2015) A rapid method for the chromatographic analysis of volatile organic compounds in exhaled breath of tobacco and electronic cigarette smoke. J Chromatogr A 1410:51–59
Maroni M, Seifert B, Lindvall T (eds) (1995) A comprehensive reference book. Air quality monographs, vol 3. Elsevier Science B.V, Amsterdam, p 17
McAuley TR, Hopke PK, Zhao J, Babaian S (2012) Comparison of the effects of e-cigarette vapor and cigarette smoke on indoor air quality. Inhal Toxicol 24:850–857
Melstrom P, Koszowski B, Thanner MH, Hoh E, King B, Bunell R, McAfee T (2017) Measuring PM2.5, ultrafine particles, nicotine air and wipe samples following the use of electronic cigarettes. Nicotine Tob Res 19:1055–1061
Minoia C, Magnaghi S, Micoli G, Fiorentino ML, Turci R, Angeleri S, Berri A (1997) Determination of environmental reference concentration of six PAHs in urban areas (Pavia, Italy). Sci Total Environ 198:33–41
Mitra S, Ray B (1995) Patterns and sources of polycylic aromatic hydrocarbons and their derivatives in indoor air. Atmos Environ 29:3345–3356
Mortamais M, Pujol J, van Drooge BL, Macià D, Martínez-Vilavella G, Reynes C, Sabatier R, Rivas I, Grimalt JO, Forns J, Alvarez-Pedrerol M, Querol X, Sunyer J (2017) Effect of exposure to polycyclic aromatic hydrocarbons on basal ganglia and attention-deficit hyperactivity disorder symptoms in primary school children. Environ Int 105:12–19
Naumova YY, Eisenreich SJ, Turpin BJ, Weisel CP, Morandi MT, Colome SD, Totten LA, Stock TH, Winer AM, Alimokhtari S, Kwon J, Shendell D, Jones J, Maberti S, Wall SJ (2002) Polycyclic aromatic hydrocarbons in the indoor and outdoor air of three cities in the US. Environ Sci Technol 36:2552–2559
O’Connell G, Colard S, Cahours X, Pritchard J (2015) An assessment of indoor air quality before, during and after unrestricted use of e-cigarettes in a small room. Int J Environ Res Public Health 12:4889–4907
Pey J, van Drooge BL, Ripoll A, Moreno T, Grimalt JO, Querol X, Alastuey A (2013) An evaluation of mass, number concentration, chemical composition and types of particles in a cafeteria before and after antismoking law. Particuology 11:527–532
Pisinger C (2015) A systematic review of health effects of electronic cigarettes. WHO. http://www.who.int/tobacco/industry/product_regulation/BackgroundPapersENDS3_4November-.pdf. Accessed 14 Dec 2018
Polosa R, Cibella F, Caponnetto P, Maglia M, Prosperini U, Russo C, Tashkin D (2017) Health impact of e-cigarettes: a prospective 3.5-year study of regular daily users who have never smoked. Sci Rep 7:13825. https://doi.org/10.1038/s41598-017-14043-2
Protano C, Avino P, Manigrasso M, Vivaldi V, Perna F, Valeriani F, Vitali M (2018) Environmental electronic vape exposure from four different generations of electronic cigarettes: airborne particulate matter levels. Int J Environ Res Public Health 15:2172. https://doi.org/10.3390/ijerph15102172
Raw GJ, Coward SK, Brown VM, Crump DR (2004) Exposure to air pollutants in English homes. J Expo Anal Environ Epidemiol 14:S85–S94
Rivas I, Viana M, Moreno T, Pandolfi M, Amato F, Reche C, Bouso L, Àlvarez-Pedrerol M, Alastuey A, Sunyer J, Querol X (2014) Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environ Int 69:200–212
Rupert AA, De Marco C, Saffari A, Pozzi P, Mazza R, Veronese C, Angelloti G, Munarini E, Ogliari AC, Westerdahl D, Hasheminassab S, Shafer MM, Schauer JJ, Repace J, Sioutas C, Boffi R (2017) Environmental pollution and emission factors of electronic cigarettes, heat-not-burn tobacco products, and conventional cigarettes. Aerosol Sci Technol 51:674–684
Saarela K, Tirkkonen T, Laine-Ylijoki J, Jurvelin J, Nieuwenhuijsen MJ, Jantunen M (2003) Exposure of population and microenvironmental distributions of volatile organic compound concentrations in the EXPOLIS study. Atmos Environ 37:5563–5575
Schober W, Szendrei K, Matzen W, Osiander-Fuchs H, Heitmann D, Schettgen T, Jörres RA, Fromme H (2014) Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases FeNO levels of e-cigarette consumers. Int J Hyg Environ Health 217:628–637
Schripp T, Markewitz D, Uhde E, Salthammer T (2013) Does e-cigarette consumption cause passive vaping. Indoor Air 23:25–31
Sexton K, Mongin SJ, Adgate JL, Pratt GC, Ramachandran G, Stock TH, Morandi MT (2007) Estimating volatile organic compound concentrations in selected microenvironments using time–activity and personal exposure data. J Toxicol Environ Health A 70:465–476
Siegel M (1993) Involuntary smoking in the restaurant workplace. A review of employee exposure and health effects. J Am Med Assoc 270:490–493
Sleiman M, Logue JM, Montesinos VN, Russell ML, Litter MI, Gundel LA, Destaillats H (2017) Emissions from electronic cigarettes: key parameters affecting the release of harmful chemicals. Environ Sci Technol 50:9644–9651
Soule EK, Maloney SF, Spindie TR, Rudy AK, Hiler MM, Cobb CO (2017) Electronic cigarette use and indoor air quality in a natural setting. Tob Control 26:109–112
van Drooge BL, Grimalt JO (2015) Particle size-resolved source apportionment of primary and secondary organic tracer compounds at urban and rural locations in Spain. Atmos Chem Phys 15:7735–7752
van Drooge BL, Lopez JL, Grimalt JO (2012) Influences of natural emission sources (wildfires and Saharan dust) on the urban organic aerosol in Barcelona (Western Mediterranean basis) during a PM event. Environ Sci Pollut Res 19:4159–4167
van Winkle MR, Scheff PA (2001) Volatile organic compounds, polycyclic aromatic hydrocarbons and elements in the air of ten urban homes. Indoor Air 11:49–64
Vartiainen E, Kulmala M, Ruuskanen TM, Taipale R, Rinne J, Vehkamäki H (2006) Formation and growth of indoor air aerosol particles as a result of d-limonene oxidation. Atmos Environ 40:7882–7892
World Health Organization (1989) Indoor air quality: organic pollutants. Euro reports Studies 111. WHO Regional Office for Europe, Copenhagen https://newscience.ul.com/wp-content/uploads/2014/04/Indoor_Air_Pollution_an_Overview.pdf. Accessed 14 Dec 2018
World Health Organization (2010) In: World Health Organization Regional Office for Europe (ed) WHO Guidelines for Indoor Air Quality: Selected Pollutants. Copenhagen. http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf. Accessed 14 Dec 2018
Funding
Partial funding from EU projects HEALS (FP7-ENV-2013-603946), NEUROSOME (H2020-MSCA-ITN-2017 SEP-210411486), and EPPA S.A has been received.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Constantini Samara
Rights and permissions
About this article
Cite this article
van Drooge, B.L., Marco, E., Perez, N. et al. Influence of electronic cigarette vaping on the composition of indoor organic pollutants, particles, and exhaled breath of bystanders. Environ Sci Pollut Res 26, 4654–4666 (2019). https://doi.org/10.1007/s11356-018-3975-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-018-3975-x