Skip to main content

Laboratory bioassays on the response of honey bee (Apis mellifera L.) glutathione S-transferase and acetylcholinesterase to the oral exposure to copper, cadmium, and lead

Abstract

In the present study, the influence of cadmium, copper, and lead on two enzymes often used as biomarkers in toxicological analysis was investigated. Bees were fed with 1 M sucrose solution containing 10-fold serial dilutions of CuCl2 (1000 mg L−1, 100 mg L−1, and 10 mg L−1), CdCl2 (0.1 mg L−1, 0.01 mg L−1, and 0.001 mg L−1), or PbCl2 (10 mg L−1, 1 mg L−1, and 0.1 mg L−1) during 48 h. Our results showed that the total glutathione S-transferase activity was not changed under the influence of cadmium and lead, and it was decreased with the highest concentration of copper. The level of gene expression of the three analyzed classes of glutathione S-transferase was significantly increased with increasing concentrations of copper and cadmium. Lead did not cause significant changes in glutathione S-transferase activity and gene expression, while it showed biphasic effect on acetylcholinesterase activity: lower concentration of lead, 0.1 mg L−1 inhibited and higher dose, 10 mg L−1 induced acetylcholinesterase activity in honey bees. Furthermore, our results showed a significant decrease of the acetylcholinesterase activity in honey bees treated with 0.001 and 0.01 mg L−1 CdCl2. Our results indicate the influence of cadmium, copper, and lead on GST and AChE in the honey bees. These results form the basis for future research on the impact of metallic trace element pollution on honey bees.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Ahmad S (1995) Oxidative stress from environmental pollutants. Arch Insect Biochem Physiol 29:135–157

    Article  CAS  Google Scholar 

  • Antúnez K, Martín-Hernández R, Prieto L, Meana A, Zunino P, Higes M (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ Microbiol 11:2284–2290

    Article  CAS  Google Scholar 

  • Aufauvre J, Misme-Aucouturier VB, Texier C, Delbac F, Blot N (2014) Transcriptome analyses of the honey bee response to Nosema ceranae and insecticides. PLoS One 9(3):e91686

    Article  CAS  Google Scholar 

  • Badiou A, Belzunces LP (2008) Is acetylcholinesterase a pertinent biomarker to detect exposure of pyrethroids? A study case with deltamethrin. Chem Biol Interact 175:406–409

    Article  CAS  Google Scholar 

  • Badiou-Beneteau A, Carvalho SM, Brunet J, Carvalho GA, Bulete A, Giroud B, Belzunces LP (2012) Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam. Ecotoxicol Environ Saf 82:22–31

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brown RJ, Galloway TS, Lowe D, Browne MA, Dissanayake A, Jones MB, Depledge MH (2004) Differential sensitivity of three marine invertebrates to copper assessed using multiple biomarkers. Aquat Toxicol 66:267–278

    Article  CAS  Google Scholar 

  • Buchwalter DB (2008) Metals. In: Smart RC, Hodgson E (eds) Molecular and biochemical toxicology. John Wiley & Sons, Inc., Hoboken, pp 413–439

    Chapter  Google Scholar 

  • Calisi A, Zaccarelli N, Lionetto MG, Schettino T (2013) Integrated biomarker analysis in the earthworm Lumbricus terrestris: application to the monitoring of soil heavy metal pollution. Chemosphere 904:2637–2644

    Article  CAS  Google Scholar 

  • Celli G, Maccagnani B (2003) Honey bees as bioindicators of environmental pollution. Bull Insectology 56:137–139

    Google Scholar 

  • Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol 15:615–636

    Article  CAS  Google Scholar 

  • Collet C, Belzunces L (2007) Excitable properties of adult skeletal muscle fibres from the honeybee Apis mellifera. J Exp Biol 210:454–464

    Article  CAS  Google Scholar 

  • Čolović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11:315–335

    Article  Google Scholar 

  • Conti ME, Botre F (2001) Honeybees and their products as potential bioindicators of heavy metals contamination. Environ Monit Assess 69:267–282

    Article  CAS  Google Scholar 

  • Corona M, Robinson GE (2006) Genes of the antioxidant system of the honey bee: annotation and phylogeny. Insect Mol Biol 15:687–701

    Article  CAS  Google Scholar 

  • Costa JR, Mela M, de Assis HC, Pelletier É, Randi MA, de Oliveira Ribeiro CA (2007) Enzymatic inhibition and morphological changes in Hoplias malabaricus from dietary exposure to lead(II) or methylmercury. Ecotoxicol Environ Saf 67:82–88

    Article  CAS  Google Scholar 

  • Cunha I, Mangas-Ramirez E, Guilhermino L (2007) Effects of copper and cadmium on cholinesterase and glutathione S-transferase activities of two marine gastropods (Monodonta lineata and Nucella lapillus). Comp Biochem Physiol C 145:648–657

    CAS  Google Scholar 

  • de Lima D, Roque GM, de Almeida EA (2013) In vitro and in vivo inhibition of acetylcholinesterase and carboxylesterase by metals in zebrafish (Danio rerio). Mar Environ Res 91:45–51

    Article  CAS  Google Scholar 

  • Di N, Hladun KR, Zhang K, Liu T, Trumble JT (2016) Laboratory bioassays on the impact of cadmium, copper and lead on the development and survival of honeybee (Apis mellifera L.) larvae and foragers. Chemosphere 152:530–538

    Article  CAS  Google Scholar 

  • Ding Y, Ortelli F, Rossiter LC, Hemingway J, Ranson H (2003) The Anopheles gambiae glutathione transferase supergene family: annotation, phylogeny and expression profiles. BMC Genomics 4:35

    Article  Google Scholar 

  • Ellman GL, Courtney KD, Andres JV, Featherstone RM (1961) A new rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  CAS  Google Scholar 

  • Evans JD, Schwartz RS, Chen YP, Budge G, Cornman RS, DeLaRua P, DeMiranda JR, Foret S, Foster L, Gauthier L, Genersch E, Gisder S, Jarosch A, Kucharski R, Lopez D, Lun CM, Moritz RFA, Maleszka R, Muñoz I, Pinto MA (2013) Standard methodologies for molecular research in Apis mellifera. In: Dietemann, V, Ellis JD, Neumann P (eds), The COLOSS BEEBOOK, Volume I: standard methods for Apis mellifera research. J Apic Res 52. https://doi.org/10.3896/IBRA.1.52.4.11

  • Forget J, Pavillon J, Beliaeff B, Bocquene G (1999) Joint action of pollutant combinations (pesticides and metals) on survival (LC50 values) and acetylcholinesterase activity of Tigriopus brevicornis (Copepoda, Harpacticoida). Environ Toxicol Chem 18:912–918

    Article  CAS  Google Scholar 

  • Formicki G, Greń A, Stawarz R, Zyśk B, Gał A (2013) Metal content in honey, propolis, wax, and bee pollen and implications for metal pollution monitoring. Pol J Environ Stud 22:99–106

    CAS  Google Scholar 

  • Frasco MF, Colletier J, Weik M, Carvalho F, Guilhermino L, Stojan J, Fournier D (2007) Mechanisms of cholinesterase inhibition by inorganic mercury. FEBS J 274:1849–1861

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. J Biol Chem 29:7130–7139

    Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol 45:51–88

    Article  CAS  Google Scholar 

  • Hladun KR, Di N, Liu TX, Trumble JT (2016) Metal contaminant accumulation in the hive: consequences for whole-colony health and brood production in the honey bee (Apis mellifera L.). Environ Toxicol Chem 35:322–329

    Article  CAS  Google Scholar 

  • Jensen CS, Garsdal L, Baatrup E (1997) Acetylcholinesterase inhibition and altered locomotor behavior in the carabid beetle Pterostichus cupreus. A linkage between biomarkers at two levels of biological complexity. Environ Toxicol Chem 16:1727–1732

    Article  CAS  Google Scholar 

  • Johnson RM (2015) Honey bee toxicology. Annu Rev Entomol 60:415–434

    Article  CAS  Google Scholar 

  • Kang JS, Lee DW, Koh YH, Lee SH (2011) A soluble acetylcholinesterase provides chemical defense against xenobiotics in the pinewood nematode. PLoS One 6:e19063

    Article  CAS  Google Scholar 

  • Kim BY, Hui WL, Lee KS, Wan H, Yoon HJ, Gui ZZ, Chen S, Jin BR (2011) Molecular cloning and oxidative stress response of a sigma-class glutathione S-transferase of the bumblebee Bombus ignitus. Comp Biochem Physiol B 158:83–89

    Article  CAS  Google Scholar 

  • Kim YH, Cha DJ, Jung JW, Kwon HW, Lee SH (2012) Molecular and kinetic properties of two acetylcholinesterases from the western honey bee, Apis mellifera. PLoS One 7:e48838

    Article  CAS  Google Scholar 

  • Kim YH, Kwon DH, Ahn HM, Koh YH, Lee SH (2014) Induction of soluble AChE expression via alternative splicing by chemical stress in Drosophila melanogaster. Insect Biochem Mol Biol 48:75e82

    Article  CAS  Google Scholar 

  • Lambert O, Piroux M, Puyo S, Thorin C, Larhantec M, Delbac F, Pouliquen H (2012) Bees, honey and pollen as sentinels for lead environmental contamination. Environ Pollut 170:254–259

    Article  CAS  Google Scholar 

  • Lee KW, Raisuddin S, Rhee JS, Hwang DS, Yu IT, Lee YM, Park HG, Lee JS (2008) Expression of glutathione S-transferase (GST) genes in the marine copepod Tigriopus japonicus exposed to trace metals. Aquat Toxicol 89:158–166

    Article  CAS  Google Scholar 

  • Li X (2009) Glutathione and glutathione-S-transferase in detoxification mechanisms. In: Ballantyne B, Marrs TC, Syversen T (eds) General and applied toxicology, third edn, vol 2009. John Wiley & Sons ltd, Chichester, pp 411–423

  • Lionetto MG, Caricato R, Calisi A, Schettino T (2011) Acetylcholinesterase inhibition as a relevant biomarker in environmental biomonitoring: new insights and perspectives. In: Visser JE (ed) Ecotoxicology around the globe. Nova Science Publishers, New York, pp 87–115

    Google Scholar 

  • Lionetto MG, Caricato R, Calisi A, Giordano ME, Schettino T (2013) Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. Biomed Res Int 2013:1–8

    Article  CAS  Google Scholar 

  • Lourenço AP, Mackert A, Cristino AD, Simões ZLP (2008) Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 39:372–385

    Article  CAS  Google Scholar 

  • Morimoto T, Kojima Y, Toki T, Komeda Y, Yoshiyama M, Kimura K, Nirasawa K, Kadowaki T (2011) The habitat disruption induces immune-suppression and oxidative stress in honey bees. Ecol Evol 1:201–217

    Article  Google Scholar 

  • Nair PMG, Choi J (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol 101:550–560

    Article  CAS  Google Scholar 

  • Negri I, Mavris C, Di Prisco G, Caprio E, Pellecchia M (2015) Honey bees (Apis mellifera, L.) as active samplers of airborne particulate matter. PLoS One 10:e0132491

    Article  CAS  Google Scholar 

  • Nikolić TV, Kojić D, Orčić S, Batinić D, Vukašinović E, Blagojević DP, Purać J (2016) The impact of sublethal concentrations of copper, lead and cadmium on honey bee redox status, superoxide dismutase and catalase in laboratory conditions. Chemosphere 164:98–105

    Article  CAS  Google Scholar 

  • Perić-Mataruga V, Petković B, Ilijin L, Mrdaković M, Dronjak Čučaković S, Todorović D, Vlahović M (2017) Cadmium and high temperature effects on brain and behaviour of Lymantria dispar L. caterpillars originating from polluted and less polluted forests. Chemosphere 185:628–636

    Article  CAS  Google Scholar 

  • Perugini M, Manera M, Grotta L, Abete MC, Tarasco R, Amorena M (2011) Heavy metal (Hg, Cr, Cd, and Pb) contamination in urban areas and wildlife reserves: honey bees as bioindicators. Biol Trace Elem Res 140:170–176

    Article  CAS  Google Scholar 

  • Qin G, Jia M, Liu T, Zhang X, Guo Y, Zhu KY, Ma E, Zhang J (2013) Characterization and functional analysis of four glutathione S-transferases from the migratory locust, Locusta migratoria. PLoS One 8(3):e58410

    Article  CAS  Google Scholar 

  • Roman A (2007) Content of some trace elements in fresh honeybee pollen. Pol J Food Nutr Sci 57:475–478

    Google Scholar 

  • Salazar-Medina AJ, García-Rico L, García-Orozco KD, Valenzuela-Soto E, Contreras-Vergara CA, Arreola R, Arvizu-Flores A, Sotelo-Mundo RR (2010) Inhibition by Cu2+ and Cd2+ of a mu-class glutathione S-transferase from shrimp Litopenaeus vannamei. J Biochem Mol Toxicol 24:218–222

    Article  CAS  Google Scholar 

  • Sarkar A, Ray D, Shrivastava AN, Sarker S (2006) Molecular biomarkers: their significance and application in marine pollution monitoring. Ecotoxicology 15:333–340

    Article  CAS  Google Scholar 

  • Schmehl DR, Teal PEA, Frazier JL, Grozinger CM (2014) Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J Insect Physiol 71:177–190

    Article  CAS  Google Scholar 

  • Sherratt PJ, Hayes JD (2001) Glutathione S-transferases. In: Ioannides C (ed) Enzyme systems that metabolize drugs and other xenobiotics. John Wiley & Sons, Ltd, Chichester, pp 319–352

    Google Scholar 

  • Sigh SP, Coronella JA, Beneš H, Cochrane BJ, Zimniak P (2001) Catalytic function of Drosophila melanogaster glutathione S-transferase DmGSTS1-1 (GST-2) in conjugation of lipid peroxidation end products. Eur J Biochem 268:2912–2923

    Article  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  CAS  Google Scholar 

  • Stone D, Jepson P, Laskowski R (2002) Trends in detoxification enzymes and heavy metal accumulation in ground beetles (Coleoptera: Carabidae) inhabiting a gradient of pollution. Comp Biochem Physiol C 132:105–112

    Google Scholar 

  • The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    Article  CAS  Google Scholar 

  • Udomsinprasert R, Pongjaroenkit S, Wongsantichon J, Oakley AJ, Prapanthadara L, Wilce MCJ, Ketterman AJ (2005) Identification, characterization and structure of a new Delta class glutathione transferase isoenzyme. Biochem J 388:763–771

    Article  CAS  Google Scholar 

  • vanEngelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103:S80–S95

    Article  Google Scholar 

  • Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxidative Med Cell Longev 2013:898034

    Google Scholar 

  • Wang S, Shi X (2001) Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem 222:3–9

    Article  CAS  Google Scholar 

  • Yan H, Jia H, Wang Z, Gao H, Guo X, Xu B (2013a) Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene (AccGSTD) in response to thermal stress. Naturwissenschaften 100:153–163

    Article  CAS  Google Scholar 

  • Yan H, Jia H, Gao H, Guo X, Xu B (2013b) Identification, genomic organization, and oxidative stress response of a sigma class glutathione S-transferase gene (AccGSTS1) in the honey bee, Apis cerana cerana. Cell Stress Chaperones 18:415–426

    Article  CAS  Google Scholar 

  • Zimniak P, Singh SP (2006) Families of glutathione transferases. In: Awasthi YC (ed) Toxicology of glutathione transferases. CRC press LLC, Boca Raton, pp 777–780

    Google Scholar 

Download references

Funding

This work was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant no. 173014, project entitled “Molecular mechanisms of redox signalling in homeostasis: adaptation and pathology.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana V. Nikolić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikolić, T.V., Kojić, D., Orčić, S. et al. Laboratory bioassays on the response of honey bee (Apis mellifera L.) glutathione S-transferase and acetylcholinesterase to the oral exposure to copper, cadmium, and lead. Environ Sci Pollut Res 26, 6890–6897 (2019). https://doi.org/10.1007/s11356-018-3950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3950-6

Keywords

  • Honey bee
  • Laboratory tests
  • Metallic trace elements
  • Detoxification
  • Gene expression
  • Enzyme activity