Desalination and removal of pesticides from surface water in Mekong Delta by coupling electrodialysis and nanofiltration

Abstract

The shortage of drinking water is a major problem in the rural areas of the Mekong Delta, especially, when surface water, a main local direct drinking water source is being threatened by pesticide pollution and salinity intrusion. A hybrid process coupling electrodialysis (ED) and nanofiltration (NF) is proposed as an effective process easy to setup in a small plant to treat complex matrix with high salinity and pesticide concentration as is the Mekong Delta surface water. Performance of the ED–NF integration was evaluated with synthetic solutions based on the comparison with a single NF step generally used for pesticide removal. Both energy consumption and water product quality were considered to assess process efficiency. The ED stage was designed to ensure a 50% removal of salinity before applying NF. As expected, the NF rejection is better in the hybrid process than in a case of a single NF step, especially for pesticide rejection. The integration of a NF stage operated with NF270 membrane consumes less energy than that with NF90 membrane but its efficiency was observed not high enough to respect the Vietnamese guidelines. Using NF90, the optimal recovery rate of the NF stage varies from 30 to 50% depending on the salt content in the feed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Al-Karaghouli A, Kazmerski LL (2013) Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew Sust Energ Rev 24:343–356. https://doi.org/10.1016/j.rser.2012.12.064

    CAS  Article  Google Scholar 

  2. Berg P, Hagmeyer G, Gimbel R (1997) Removal of pesticides and other micropollutants by nanofiltration. Desalination 113:205–208. https://doi.org/10.1016/S0011-9164(97)00130-6

    CAS  Article  Google Scholar 

  3. Van der Bruggen B, Everaert K, Wilms D, Vandecasteele C (2001) Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation. J Membr Sci 193:239–248. https://doi.org/10.1016/S0376-7388(01)00517-8

    Article  Google Scholar 

  4. Van der Bruggen B, Schaep J, Maes W, Wilms D, Vandecasteele C (1998) Nanofiltration as a treatment method for the removal of pesticides from ground waters. Desalination 117:139–147. https://doi.org/10.1016/S0011-9164(98)00081-2

    Article  Google Scholar 

  5. Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut 122:435–445. https://doi.org/10.1016/S0269-7491(02)00308-1

    Article  Google Scholar 

  6. Chau NDG, Sebesvari Z, Amelung W, Renaud FG (2015) Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ Sci Pollut Res 22:9042–9058. https://doi.org/10.1007/s11356-014-4034-x

    CAS  Article  Google Scholar 

  7. Cyna B, Chagneaub G, Bablon G, Tanghe N (2002) Two years of nanofiltration at the Mery-sur-Oise plant, France. Desalination 147:69–75. https://doi.org/10.1016/S0011-9164(02)00578-7

    CAS  Article  Google Scholar 

  8. Escoda A, Fievet P, Lakard S, Szymczyk A, Déon S (2010) Influence of salts on the rejection of polyethyleneglycol by an NF organic membrane: pore swelling and salting-out effects. J Membr Sci 347:174–182. https://doi.org/10.1016/j.memsci.2009.10.021

    CAS  Article  Google Scholar 

  9. Galama AH, Saakes M, Bruning H, Rijnaarts HHM, Post JW (2014) Seawater predesalination with electrodialysis. Desalination 342:61–69. https://doi.org/10.1016/j.desal.2013.07.012

    CAS  Article  Google Scholar 

  10. Van Geluwe S, Braeken L, Robberecht T, Jans M, Creemers C, Van der Bruggen B (2011) Evaluation of electrodialysis for scaling prevention of nanofiltration membranes at high water recoveries. Resour Conserv Recycl 56:34–42. https://doi.org/10.1016/j.resconrec.2011.09.001

    Article  Google Scholar 

  11. Geraldes V, de Pinho MN (1995) Process water recovery from pulp bleaching effluents by an NF/ED hybrid process. J Membr Sci 102:209–221. https://doi.org/10.1016/0376-7388(94)00325-S

    CAS  Article  Google Scholar 

  12. Košutić K, Furač L, Sipos L, Kunst B (2005) Removal of arsenic and pesticides from drinking water by nanofiltration membranes. Sep Purif Technol 42:137–144. https://doi.org/10.1016/j.seppur.2004.07.003

    CAS  Article  Google Scholar 

  13. Liu J, Yuan J, Ji Z, Wang B, Hao Y, Guo X (2016) Concentrating brine from seawater desalination process by nanofiltration–electrodialysis integrated membrane technology. Desalination 390:53–61. https://doi.org/10.1016/j.desal.2016.03.012

    CAS  Article  Google Scholar 

  14. Miralles-Cuevas S, Oller I, Pérez JAS, Malato S (2014) Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH. Water Res 64:23–31. https://doi.org/10.1016/j.watres.2014.06.032

    CAS  Article  Google Scholar 

  15. Nghiem LD, Schäfer a I, Elimelech M (2004) Removal of natural hormones by nanofiltration membranes: measurements, modeling, and mechanisms. Environ Sci Technol 38:1888–1896. https://doi.org/10.1021/es034952r

    CAS  Article  Google Scholar 

  16. Nguyen DL (2016) Membrane technology for treatment of surface water in the Mekong Delta. University of Montpellier, PhD Dissertation

    Google Scholar 

  17. Nguyen, Huu Dung, and Thi Thanh Dung Tran. 1997. Research reports: economic and health consequences of pesticide use in paddy production in the Mekong Delta, Vietnam. International Development Research Centre, Ottawa, Canada.

  18. Nguyen, Ngoc Anh. 2017. Historic drought and salinity intrusion in the Mekong Delta in 2016: lessons learned and response solutions. Vietnam J Sci Technol Eng 60: 93–96. :https://doi.org/10.31276/VJSTE.59(1).93.

    Article  Google Scholar 

  19. Ormad MP, Miguel N, Claver A, Matesanz JM, Ovelleiro JL (2008) Pesticides removal in the process of drinking water production. Chemosphere 71:97–106. https://doi.org/10.1016/j.chemosphere.2007.10.006

    CAS  Article  Google Scholar 

  20. Palmeri J, Ben Amar N, Saidani H, Deratani A (2009) Process modeling of brackish and seawater nanofiltration. Desalin Water Treat 9:263–271

    CAS  Article  Google Scholar 

  21. Post JW, Huiting H, Cornelissen ER, Hamelers HVM (2011) Pre-desalination with electro-membranes for SWRO. Desalin Water Treat 31:296–304. https://doi.org/10.5004/dwt.2011.2400

    CAS  Article  Google Scholar 

  22. Reig M, Casas S, Gibert O, Valderrama C, Cortina JL (2016a) Integration of nanofiltration and bipolar electrodialysis for valorization of seawater desalination brines: production of drinking and waste water treatment chemicals. Desalination 382:13–20. https://doi.org/10.1016/j.desal.2015.12.013

    CAS  Article  Google Scholar 

  23. Reig M, Casas S, Valderrama C, Gibert O, Cortina JL (2016b) Integration of monopolar and bipolar electrodialysis for valorization of seawater reverse osmosis desalination brines: Production of strong acid and base. Desalination 398:87–97. https://doi.org/10.1016/j.desal.2016.07.024

    CAS  Article  Google Scholar 

  24. Renaud, Fabrice G., and Claudia Kuenzer. 2012. The Mekong Delta system: interdisciplinary analyses of a river delta. Springer. Springer. :https://doi.org/10.1073/pnas.0703993104.

    CAS  Article  Google Scholar 

  25. Sadrzadeh M, Mohammadi T (2008) Sea water desalination using electrodialysis. Desalination 221:440–447. https://doi.org/10.1016/j.desal.2007.01.103

    CAS  Article  Google Scholar 

  26. Salgın S, Salgın U, Soyer N (2013) Streaming potential measurements of polyethersulfone ultrafiltration membranes to determine salt effects on membrane zeta potential. Int J Electrochem Sci 8:4073–4084

    Google Scholar 

  27. Sarkar B, Venkateshwarlu N, Nageswara Rao R, Bhattacharjee C, Kale V (2007) Potable water production from pesticide contaminated surface water—a membrane based approach. Desalination 204:368–373. https://doi.org/10.1016/j.desal.2006.02.041

    CAS  Article  Google Scholar 

  28. Sebesvari Z, Le TTH, Pham VT, Arnold U, Renaud FG (2012) Agriculture and water quality in the Vietnamese Mekong Delta. In: Renaud FG, Kuenzer C (eds) The Mekong Delta system, pp 331–361. https://doi.org/10.1007/978-94-007-3962-8

    Google Scholar 

  29. Streit KF, Gerevini GG, Rodrigues MAS, Ferreira JZ, Bernardes AM, De Pinho MN (2013) Electrodialysis in an integrated NF/ED process for water recovery in the leather industry. Sep Sci Technol 48:445–454. https://doi.org/10.1080/01496395.2012.725794

    CAS  Article  Google Scholar 

  30. Teixeira MR, Rosa MJ, Nyström M (2005) The role of membrane charge on nanofiltration performance. J Membr Sci. https://doi.org/10.1016/j.memsci.2005.04.046

    CAS  Article  Google Scholar 

  31. Thanuttamavong M, Yamamoto K, Ik Oh J, Ho Choo K, June Choi S (2002) Rejection characteristics of organic and inorganic pollutants by ultra low-pressure nanofiltration of surface water for drinking water treatment. Desalination 145:257–264. https://doi.org/10.1016/S0011-9164(02)00420-4

    CAS  Article  Google Scholar 

  32. Toan, Pham Van, Zita Sebesvari, Melanie Bläsing, Ingrid Rosendahl, and Fabrice G. Renaud. 2013. Pesticide management and their residues in sediments and surface and drinking water in the Mekong Delta, Vietnam. The Science of the Total Environment 452–453. Elsevier B.V.: 28–39. :https://doi.org/10.1016/j.scitotenv.2013.02.026.

    CAS  Article  Google Scholar 

  33. Ventresque C, Bablon G (1997) The integrated nanofiltration system of the Mery-sur-Oise surface water treatment plant (37 mgd). Desalination 113:263–266

    CAS  Article  Google Scholar 

  34. Vergili I (2013) Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. J Environ Manag 127:177–187. https://doi.org/10.1016/j.jenvman.2013.04.036

    CAS  Article  Google Scholar 

  35. Wilbers G-j, Sebesvari Z, Renaud FG (2014b) Piped-water supplies in rural areas of the Mekong Delta, Vietnam: water quality and household perceptions. Water 6:2175–2194. https://doi.org/10.3390/w6082175

    CAS  Article  Google Scholar 

  36. Wilbers, Gert Jan, Mathias Becker, La Thi Nga, Zita Sebesvari, and Fabrice G Renaud. 2014a. Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam. The Science of the Total Environment 485–486. Elsevier B.V.: 653–65. :https://doi.org/10.1016/j.scitotenv.2014.03.049.

    CAS  Article  Google Scholar 

  37. Zhang Y, Van der Bruggen B, Chen GX, Braeken L, Vandecasteele C (2004) Removal of pesticides by nanofiltration: effect of the water matrix. Sep Purif Technol 38:163–172. https://doi.org/10.1016/j.seppur.2003.11.003

    CAS  Article  Google Scholar 

  38. Zhang Y, Causserand C, Aimar P, Cravedi JP (2006) Removal of bisphenol A by a nanofiltration membrane in view of drinking water production. Water Res 40:3793–3799. https://doi.org/10.1016/j.watres.2006.09.011

    CAS  Article  Google Scholar 

  39. Zhao Y, Xing W, Xu N, Wong F-S (2005) Effects of inorganic electrolytes on zeta potentials of ceramic microfiltration membranes. Sep Purif Technol 42:117–121. https://doi.org/10.1016/j.seppur.2004.06.011

    CAS  Article  Google Scholar 

Download references

Funding

D. L. Nguyen received funding from the Vietnamese government (VIED—Vietnam International Education Development—Project 911) by the University of Science and Technology of Hanoi (USTH) and also support from the Campus France during his stay in France.

Author information

Affiliations

Authors

Corresponding author

Correspondence to André Deratani.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, L.D., Gassara, S., Bui, M.Q. et al. Desalination and removal of pesticides from surface water in Mekong Delta by coupling electrodialysis and nanofiltration. Environ Sci Pollut Res 26, 32687–32697 (2019). https://doi.org/10.1007/s11356-018-3918-6

Download citation

Keywords

  • Mekong Delta
  • Hybrid process
  • Nanofiltration; Electrodialysis
  • Pesticide
  • Desalination