Unraveling the sources and fluorescence compositions of dissolved and particulate organic matter (DOM and POM) in Lake Taihu, China

Abstract

Organic matter (OM), a complex entity with diverse functional groups and molecular sizes, has important effects on aquatic systems. We studied the optical compositions and sources of dissolved organic matter (DOM) and particulate organic matter (POM) in Lake Taihu, a large, shallow and eutrophic lake in China. Significant differences in optical compositions and sources occurred between the POM and DOM. The temporal–spatial distribution of the fluorescence indices suggested that the POM in Lake Taihu was mainly from autochthonous sources, but more exogenous characteristics were shown in POM in the river mouths compared with other regions. The chromophoric DOM in Lake Taihu mainly displayed autochthonous characteristics. The POM–DOM PARAFAC model was used to examine OM optical composition and five components were identified, which contained three protein-like components (C1, C2, and C5), a microbial humic-like component (C3), and a terrestrial humic-like component (C4). The POM was dominated by C5 in summer and autumn and C3 in winter and spring, and the DOM was dominated by protein-like components (C1, C2, and C5) through the entire year. The algae-dominated region had a relative higher contribution of tryptophan-like components of POM compared with the macrophyte-dominated region. A conceptual model based on the theory of “four phases of cyanobacteria bloom development” was proposed to fully describe the relationship between POM–DOM exchanges and cyanobacteria bloom development.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  CAS  Google Scholar 

  2. Birdwell JE, Engel AS (2010) Characterization of dissolved organic matter in cave and spring waters using UV-Vis absorbance and fluorescence spectroscopy. Org Geochem 41:270–280

    Article  CAS  Google Scholar 

  3. Cifuentes LA, Sharp JH, Fogel ML (1988) Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary. Limnol Oceanogr 33(5):1102–1115

    Article  CAS  Google Scholar 

  4. Conmy RN, Coble PG, Cannizzaro JP, Heil CA (2015) Influence of extreme storm events on West Florida Shelf CDOM distributions. J Geophys Res Biogeosci 114(G4):G00F04

    Google Scholar 

  5. Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149

    Article  CAS  Google Scholar 

  6. Del Giorgio PA, Duarte CM (2002) Respiration in the open ocean. Nature 420:379–384

    Article  CAS  Google Scholar 

  7. Druon JN, Mannino A, Signorini S, McClain C, Friedrichs M, Wilkin J, Fennel K (2010) Modeling the dynamics and export of dissolved organic matter in the northeastern US continental shelf. Estuar Coast Shelf Sci 88:488–507

    Article  Google Scholar 

  8. Engel A, Thoms S, Riebesell U, Rochelle-Newall E, Zondervan I (2004) Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428:929–932

    Article  CAS  Google Scholar 

  9. Eriksson J, Frankki S, Shchukarev A, Shyllberg U (2004) Binding of 2,4,6-trinitrotoluene, aniline, and nitrobenzene to dissolved and particulate soil organic matter. Environ Sci Technol 38(11):3074–3080

    Article  CAS  Google Scholar 

  10. Giani M, Savelli F, Berto D, Zangrando V, Cosovic B, Vojvodic V (2005) Temporal dynamics of dissolved and particulate organic carbon in the northern Adriatic Sea in relation to the mucilage events. Sci Total Environ 353:126–138

    Article  CAS  Google Scholar 

  11. He D, Zhang YM, Yang F (2016a) The transformation of the nutrient in the degradation process of the phytoplankton-derived particulate organic matter and its ecological effect. China Environ Sci 36(3):899–907 (in Chinese)

    Google Scholar 

  12. He W, Chen ML, Schlautman MA, Hur J (2016b) Dynamic exchanges between DOM and POM pools in coastal and inland aquatic ecosystems: a review. Sci Total Environ 551-552:415–428

    Article  CAS  Google Scholar 

  13. Hopkinson CS, Vallino JJ (2005) Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433:142–145

    Article  CAS  Google Scholar 

  14. Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706–719

    Article  CAS  Google Scholar 

  15. Jiang JW, Li SD, Shen YY, Wu YL, Huang CC, Huang T, Jiang S (2017) Spatial differences of optical properties of CDOM and their sources apportionment in Taihu Lake in summer. Res Environ Sci 30(7):1020–1030 (in Chinese)

    Google Scholar 

  16. Jin XC, Tu QY (1990) Specification for eutrophication investigation of lakes. China Environmental Science Press, Beijing (in Chinese)

    Google Scholar 

  17. Karmer GD, Herndl GJ (2004) Photo- and bioreactivity of chromophoric dissolved organic matter produced by marine bacterioplankton. Aquat Microb Ecol 36(3):239–246

    Article  Google Scholar 

  18. Kong FX, Ma RH, Gao JF, Wu XD (2009) The theory and practice of prevention, forecast and warning on cyanobacteria bloom in Lake Taihu. J Lake Sci 21(3):314–328 (in Chinese)

    Article  CAS  Google Scholar 

  19. Kowalczuk P, Cooper WJ, Durako MJ, Kahn AE, Gonsior M (2010) Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: relationships between fluorescence and its components, absorption coefficients and organic carbon concentrations. Mar Chem 118:22–36

    Article  CAS  Google Scholar 

  20. Lapierre JF, Frenette JJ (2009) Effects of macrophytes and terrestrial inputs on fluorescent dissolved organic matter in a large river system. Aquat Sci 71:15–24

    Article  CAS  Google Scholar 

  21. Larsen L, Harvey J, Skalak K, Goodman M (2015) Fluorescence-based source tracking of organic sediment in restored and unrestored urban streams. Limnol Oceanogr 60(4):1439–1461

    Article  CAS  Google Scholar 

  22. Liebig J (1842) Chemistry in its application to agriculture and physiology. Johnson Reprint Corporation, New York

    Google Scholar 

  23. Lü SG, Wang XC, Han BP (2009) A field study on the conversion ratio of phytoplankton biomass carbon to chlorophyll—a in Jiaozhou Bay, China. Chin J Oceanol Limnol 27(4):793–805

    Article  CAS  Google Scholar 

  24. Ma JR, Qin BQ, Wu P, Zhou J, Niu C, Deng JM, Niu HL (2015) Controlling cyanobacterial blooms by managing nutrient ratio and limitation in a large hyper-eutrophic lake: Lake Taihu, China. J Environ Sci 27:80–86

    Article  CAS  Google Scholar 

  25. Margot S, Toomas K, Peeter N, Tiina N (2018) Do organic matter metrics included in lake surveillance monitoring in Europe provide a broad picture of brownification and enrichment with oxygen consuming substances? Sci Total Environ 610-611:1288–1297

    Article  CAS  Google Scholar 

  26. Mayer LM, Schick LL, Hardy KR, Estapa ML (2009) Photo dissolution and other photochemical changes upon irradiation of algal detritus. Limnol Oceanogr 54:1688–1698

    Article  CAS  Google Scholar 

  27. Mayer LM, Thornton KH, Schick LL (2011) Bioavailability of organic matter photo dissolved from coastal sediments. Aquat Microb Ecol 64(3):275–284

    Article  Google Scholar 

  28. Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541

    Article  CAS  Google Scholar 

  29. McCallister SL, Bauer JE, Ducklow HW, Canuel EA (2006) Sources of estuarine dissolved and particulate organic matter: a multi-tracer approach. Org Geochem 37:454–468

    Article  CAS  Google Scholar 

  30. Mecozzi M, Pietrantonio E, Di Noto V, Papai Z (2005) The humic structure of mucilage aggregates in the Adriatic and Tyrrhenian seas: hypothesis about the reasonable causes of mucilage formation. Mar Chem 95:255–269

    Article  CAS  Google Scholar 

  31. Miller C, Gordon KG, Kieber RJ, Willey JD, Seaton PJ (2009) Chemical characteristics of chromophoric dissolved organic matter in rainwater. Atmos Environ 43:2497–2502

    Article  CAS  Google Scholar 

  32. Murphy KR, Stedmon CA, Waite TD, Ruiz GM (2008) Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar Chem 108:40–58

    Article  CAS  Google Scholar 

  33. Murphy KR, Stedmon CA, Wenig P, Bro R (2014) OpenFluor-an online spectral library of auto-fluorescence by organic compounds in the environment. Anal Methods 6:658–661

    Article  CAS  Google Scholar 

  34. Nieto-Cid M, Alvarez-Salgado XA, Perez FF (2006) Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnol Oceanogr 51:1391–1400

    Article  CAS  Google Scholar 

  35. Ohno T (2002) Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol 36(4):742–746

    Article  CAS  Google Scholar 

  36. Osburn CL, Handsel LT, Mikan MP, Paerl HW, Montgomery MT (2012) Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary. Environ Sci Technol 46:8628–8636

    Article  CAS  Google Scholar 

  37. Osburn CL, Mikan MP, Etheridge JR, Burchell MR, Birgand F (2015) Seasonal variation in the quality of dissolved and particulate organic matter exchanged between a salt marsh and its adjacent estuary. J Geophys Res Biogeosci 120(7):1430–1449

    Article  CAS  Google Scholar 

  38. Pace DA, Manahan DT (2007) Efficiencies and costs of larval growth in different food environments. J Exp Mar Biol Ecol 353(1):89–106

    Article  Google Scholar 

  39. Parsons TR, Takahashi M, Hargrave B (1977) Biological oceanographic processes, 2nd edn. Pergamon Press, New York, p 332

    Google Scholar 

  40. Qin BQ, Xu P, Wu Q, Luo L, Zhang YL (2007) Environmental issues of Lake Taihu, China. Hydrobiologia 581:3–14

    Article  CAS  Google Scholar 

  41. Romera-Castillo C, Sarmento H, Alvarez-Salgado XA, Gasol JM, Marrase C (2011) Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Appl Environ Microbiol 77:7490–7498

    Article  CAS  Google Scholar 

  42. Roulet N, Moore TR (2006) Environmental chemistry: browning the waters. Nature 444:283–284

    Article  CAS  Google Scholar 

  43. Shank GC, Evans A, Yamashita Y, Jaffe R (2011) Solar radiation enhanced dissolution of particulate organic matter from coastal marine sediments. Limnol Oceanogr 56(2):577–588

    Article  CAS  Google Scholar 

  44. Simon M, Grossart H, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:172–211

    Google Scholar 

  45. Smith VH (2006) Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnol Oceanogr 51(1):377–384

    Article  CAS  Google Scholar 

  46. Spencer RGM, Aiken GR, Butler KD, Dornblaser MM, Striegl RG, Hernes PJ (2009) Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: a case study of the Yukou River, Alaska. Geophys Res Lett 36(6):141–153

    Article  CAS  Google Scholar 

  47. Stedmon CA, Markager S (2005a) Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnol Oceanogr 50:1415–1426

    Article  CAS  Google Scholar 

  48. Stedmon CA, Markager S (2005b) Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50:686–697

    Article  CAS  Google Scholar 

  49. Steinberg DK, Nelson NB, Carlson CA, Prusak AC (2004) Production of chromophoric dissolved organic matter (CDOM) in the open ocean by zooplankton and the colonial cyanobacterium Trichodesmium spp. Mar Ecol Prog Ser 267:45–56

    Article  CAS  Google Scholar 

  50. Turner JT (2002) Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Microb Ecol 27:57–102

    Article  Google Scholar 

  51. Verburg P, Horrox J, Chaney E, Rutherford J, Quinn J, Wilcock R (2013) Nutrient ratios, differential retention, and the effect on nutrient limitation in a deep oligotrophic lake. Hydrobiologia 718(1):119–130

    Article  CAS  Google Scholar 

  52. Verdugo P, Allderdge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85

    Article  CAS  Google Scholar 

  53. Wang GS, Post WM, Mayes MA (2013) Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecol Appl 23:255–272

    Article  Google Scholar 

  54. Wang SH, Wang WW, Jiang X, Zhao L, Zhang B (2016) Distribution of chromophoric dissolved organic matter in Lihu Lake using excitation-emission matrix fluorescence and parallel factor analysis. China Environ Sci 36(2):517–524 (in Chinese)

    Google Scholar 

  55. Williams CJ, Yamashita Y, Wilson HF (2010) Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol Oceanogr 55:1159–1171

    Article  CAS  Google Scholar 

  56. Wu FC, Jin XC, Zhang RY, Liao HQ, Wang SR, Jiang X, Wang LY, Guo JY, Li W, Zhao XL (2010) Effects and significance of organic nitrogen and phosphorous in the lake aquatic environment. J Lake Sci 22(1):1–7 (in Chinese)

    Article  CAS  Google Scholar 

  57. Xu H, Paerl HW, Qin BQ, Zhu GW, Gao G (2010) Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol Oceanogr 55(1):420–432

    Article  CAS  Google Scholar 

  58. Yamashita Y, Jaffe R, Maie N, Tanoue E (2008) Assessing the dynamics of dissolved organic matter in coastal environments by excitations emission matrix fluorescence and parallel factor analysis. Limnol Oceanogr 53:1900–1908

    Article  CAS  Google Scholar 

  59. Yang XF, Li ZQ, Meng FG, Wang ZG, Sun L (2014) Photochemical alteration of biogenic particles in wastewater effluents. Chinese Sci Bull 59(28):3659–3668

    Article  CAS  Google Scholar 

  60. Yao X, Zhang YL, Zhu GW, Qin BQ, Feng LQ, Cai LL, Gao G (2011) Resolving the variability of CDOM fluorescence to differentiate the sources and fate of DOM in Lake Taihu and its tributaries. Chemosphere 82:145–155

    Article  CAS  Google Scholar 

  61. Yao X, Zhang YL, Zhu GW, Qin BQ (2014) Different degradation mechanism of dissolved organic matter derived from phytoplankton and macrophytes in Lake Taihu, China. Acta Sci Circumst 34(3):688–694 (in Chinese)

    CAS  Google Scholar 

  62. Ye LL, Wu XD, Yan DZ, Liu B (2017) Seasonal dynamics of particulate organic carbon concentration in surface water and its source in the northwest of Lake Taihu. Acta Sci Circumst 37(4):1323–1329 (in Chinese)

    CAS  Google Scholar 

  63. Yu HB, Song YH, Du E, Yang N (2016) Comparison of PARAFAC components of fluorescent dissolved and particular organic matter from two urbanized rivers. Environ Sci Pollut Res 23(11):1–12

    Article  CAS  Google Scholar 

  64. Zeng QF, Kong FX, Zhang EL, Tan X (2007) Effects of anthropogenic organic matter inputs on carbon and nitrogen isotopes in organisms from microbial food chain in Taihu Lake. Environ Sci 28(8):1670–1674

    CAS  Google Scholar 

  65. Zhang YL, van Dijk MA, Liu ML, Zhu GW, Qin BQ (2009) The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: field and experimental evidence. Water Res 43:4685–4697

    Article  CAS  Google Scholar 

  66. Zhang YL, Zhang EL, Yin Y, van Dijk MA, Feng LQ, Shi ZQ, Liu ML, Qin BQ (2010) Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude. Limnol Oceanogr 55:2645–2659

    Article  CAS  Google Scholar 

  67. Zhang YL, Yin Y, Liu XH, Shi ZQ, Feng LQ, Liu ML, Zhu GW, Gong ZJ, Qin BQ (2011) Spatial-seasonal dynamics of chromophoric dissolved organic matter in Lake Taihu, a large eutrophic, shallow lake in China. Org Geochem 42:510–519

    Article  CAS  Google Scholar 

  68. Zhang YL, Liu XH, Wang MZ, Qin BQ (2013) Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Org Geochem 55:26–37

    Article  CAS  Google Scholar 

  69. Zhang YL, Shi K, Zhou YQ, Liu XH, Qin BQ (2016) Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery. Remote Sens Environ 173:109–121

    Article  Google Scholar 

  70. Zhou YQ, Jeppesen E, Zhang YL, Niu C, Shi K, Liu X (2015a) Chromophoric dissolved organic matter of black waters in a highly eutrophic Chinese lake: freshly produced from algal scums? J Hazard Mater 299:222–230

    Article  CAS  Google Scholar 

  71. Zhou YQ, Zhang YL, Shi K, Niu C, Liu XH, Duan HT (2015b) Lake Taihu, a large, shallow and eutrophic aquatic ecosystem in China serves as a sink for chromophoric dissolved organic matter. J Great Lakes Res 41:597–606

    Article  CAS  Google Scholar 

  72. Zhou YQ, Zhou J, Jeppesen E, Zhang YL, Qin BQ, Shi K, Tang XM, Han XX (2016) Will enhanced turbulence in inland waters result in elevated production of autochthonous dissolved organic matter? Sci Total Environ 543:405–415

    Article  CAS  Google Scholar 

  73. Zhu M, Zhu G, Zhao L, Yao X, Zhang Y, Gao G (2013) Influence of algal bloom degradation on nutrient release at the sediment-water interface in Lake Taihu, China. Environ Sci Pollut Res 20(3):1803–1811

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff of the Taihu Laboratory for Lake Ecosystem Research for helping with sample collection. We especially thank Dr. Sarah Poynton of Johns Hopkins University for her useful comments and linguistic improvements.

Funding

This study was supported by the National Natural Science Foundation of China (Nos. 41501101, 41301544), the Natural Science Foundation of Jiangsu Province, China (No. BK20151059), the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2017ZX07203-004), and the State Key Laboratory of Lake Science and Environment (No. 2018SKL004).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yao Xin.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weiwei, L., Xin, Y., Keqiang, S. et al. Unraveling the sources and fluorescence compositions of dissolved and particulate organic matter (DOM and POM) in Lake Taihu, China. Environ Sci Pollut Res 26, 4027–4040 (2019). https://doi.org/10.1007/s11356-018-3873-2

Download citation

Keywords

  • Dissolved organic matter (DOM)
  • Particulate organic matter (POM)
  • Eutrophication
  • Lake Taihu
  • Fluorescence compositions
  • POM–DOM PARAFAC model