Skip to main content
Log in

Using the method of dynamic factors for assessing the transfer of chemical elements from soil to plants from various perspectives

  • Appropriate Technologies to Combat Water Pollution
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Environmental, biological, and ecosystem-specific properties may influence the transfer of chemical elements (CEs) from soils to plants, including the variation in the chemical elements’ concentration, their types, and physiological parameters, such as biotransformation ability in the plants. The interface between the soil and a plant, or the concentration of a particular chemical element in a plant with respect to its concentration in the soil, is the basis for a widely used biological absorption coefficient, also known as the transfer factor, bioaccumulation factor, mobility ratio, or plant-soil coefficient, which is expressed in terms of the chemical element’s concentration in the plant and soil. However, from the biogeochemical perspective, these coefficients/factors can provide a comparison of the chemical element (CE) concentration in different media (plants and soil), but only in a particular place (under typical environmental conditions) and at a particular time. However, factors that highlight the variation in the processes, rather than the variation in the chemical element quantity under the conditions of the environmental variation, are required. The second-level or dynamic factors can be used for this purpose. A quantitative method, using the dynamic factors of bioaccumulation, biophilicity, translocation, bioavailability, and phytoremediation, is offered to assess the variation in the process of the uptake of chemical elements by different plants, to evaluate the influence of soil modification on their participation in the plants’ metabolism and to perform quantitative evaluation of phytoremediation efficiency over a particular period of time. The use of dynamic factors for describing the chemical elements’ uptake by plants in various cases, representing aerogenic and edaphic chemical elements’ transfer, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adriano DC (1992) Biogeochemistry of trace metals. Lewis, Boca Raton

    Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals – concepts and applications. Chemosphere 91:869–881

    CAS  Google Scholar 

  • Antoniadis V, Tsadilas CD, Samaras V, Sgouras J (2006) Availability of heavy metals applied to soil through sewage sludge. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. Taylor and Francis, Boca Raton

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders: strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2012) Use of dynamic factors to assess metal uptake and transfer in plants - example of trees. Water Air Soil Pollut 223(7):4297–4306

    Google Scholar 

  • Baltrėnaitė E, Baltrėnas P, Lietuvninkas A, Šerevičienė V, Zuokaitė E (2014) Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media. Environ Sci Pollut Res 21(1):299–313

    Google Scholar 

  • Baltrėnaitė E, Baltrėnas P, Lietuvninkas A (2016) The sustainable role of the tree in environmental protection technologies. Monograph. Printforce, Netherlands, p 360

    Google Scholar 

  • Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2017) Modelling the phytoremediation: concepts, models and approaches. In: Ansari AA, Gill SS, Gill R, Lanza G, Newman L (eds) Phytoremediation – management of environmental contaminants, vol 5. pp 327–341. Available at: https://link.springer.com/chapter/10.1007/978-3-319-52,381-1_12

  • Baltrėnaitė E, Lietuvninkas A, Baltrėnas P (2018) Biogeochemical and engineered barriers for preventing spread of contaminants. Environ Sci Pollut Res 25(6):5254–5268

    Google Scholar 

  • Barceló J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2:333–344

    Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Google Scholar 

  • Butkus D, Lukšienė B, Pliopaitė Bataitienė I (2014) Radionuklidai augaluose. Monografija, Vilnius: Technika. 296 p.

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302(1–2):1–17

    CAS  Google Scholar 

  • Chamberlain AC (1983) Fallout of lead and uptake by crops. Atmos Environ 17:693–706

    CAS  Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JFEA (ed) Land treatment of hazardous wastes. Noyes Data Corp, Park Ridge, pp 50–76

    Google Scholar 

  • Cluis C (2004) Junk-greedy greens: phytoremediation as a new option for soil decontamination. BioTeach J 2:61–67

    Google Scholar 

  • CNEMC (China National Environmental Monitoring Center) (1990) Background values of soil elements in China, 1st edn. Chinese Environmental Science Press, Beijing (in Chinese)

    Google Scholar 

  • Cook E, Kairiūkštis L (1999) Methods of dendrochronology. Applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht, p 394

  • Dobrovolskii VV (2008) Geokhinicheskoe zemledekie. Gumanit. izd. tsentr, VLADOS, Moskva, p 207 (in Russian)

  • Dudka S, Chlopecka A (1990) Effect of solid-phase speciation on metal mobility and phytoavailability in sludge-amended soil. Water Air Soil Pollut 51(1–2):153–160

    CAS  Google Scholar 

  • Gál J, Hursthhouse A, Tatner P, Steward F, Welton R (2008) Cobalt and secondary poisoning in the terrestrial food chain: data review and research gaps to support risk assessment. Environ Int 34:821–838

    Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Miner Process Environ Prot 3:58–66

    Google Scholar 

  • Golan-Goldhirsh A, Barazani O, Nepovim A, Soudek P, Smrcek S, Dufkova L, Krenkova S, Yrjala K, Schroeder P, Vanek T (2004) Plant response to heavy metals and organic pollutants in cell culture and at whole plant level. J Soil Sediments 4:133–140

    CAS  Google Scholar 

  • Greipsson S (2011) Phytoremediation. Nat Educ Knowl 2:7

    Google Scholar 

  • Hung H, Mackay D (1997) A novel and simple model of the uptake of organic chemicals by vegetation from air and soil. Chemosphere 35:959–977

    CAS  Google Scholar 

  • Jamil S, Abhilash PC, Singh N, Sharma PN (2009) Jatropha curcas: a potential crop for phytoremediation of coal fly ash. J Hazard Mater 172:269–275

    CAS  Google Scholar 

  • Kabata Pendias A (2010) Trace elements in soils and plants. CRC Press/Taylor and Francis, Boca Raton, 520 p

    Google Scholar 

  • Kovalevsky AL (1987) Biogeochemical exploration for mineral deposits (p. 224). Utrecht: VNU Science.

  • Krastinytė V, Baltrėnaitė E, Lietuvninkas A (2013) Analysis of snow-cap pollution for the air quality assessment in the vicinity of oil refinery. Environ Technol 34(6):757–763

    Google Scholar 

  • Kupčinskienė E (2011) Aplinkos fitoindikacija. Eugenija Kupčinskienė, Kaunas, 752 p

    Google Scholar 

  • Lepp NW, Madejon P (2007) Cadmium and zinc in vegetation and litter of a voluntary woodland that has developed on contaminated sediment-derived soil. J Environ Qual 36(4):1123–1131

    CAS  Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178(1):92–102

    CAS  Google Scholar 

  • Lietuvninkas A (2012) Environmental geochemistry. Technika, Vilnius 312 pp. (in Lithuanian).

    Google Scholar 

  • Lux A, Šottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of Cd accumulation and sensitivity. Physiol Plant 120:537–545

    CAS  Google Scholar 

  • Markert B (1994) The biological system of the elements (BSE) for terrestrial plants (glycophytes). Sci Total Environ 155:221–228

    CAS  Google Scholar 

  • Markert B, Weckert V (1993) Time-and-site integrated long-term biomonitoring of chemical elements by means of mosses. Toxicol Environ Chem 40:43–56

    CAS  Google Scholar 

  • Markert B, Fraenzle S, Fomin A (2002) From the biological system of the elements to biomonitoring. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Markert B, Breure A, Zechmeister H (2003a) Bioindicators and biomonitors. Principles, Concepts and Applications. Elsevier, Amsterdam

    Google Scholar 

  • Markert B, Breure A, Zechmeister H (2003b) Definitions, strategies and principles for bioindication/biomonitoring of the environment. In: Markert B, Breure A, Zechmeister H (eds) Bioindicators and biomonitors, Principles, concepts and applications. Elsevier, Amsterdam, pp 3–39

    Google Scholar 

  • Markert B, Wunschmann S, Baltrėnaitė E (2012) Aplinkos stebėjimo naujovės. Bioindikatoriai ir biomonitoriai: apibrėžtys, strategijos ir taikymas. [Innovative observation of the environment: bioindicators and biomonitors: definitions, strategies and applications]. J Environ Eng Landsc Manag 20(3):221–239

    Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    CAS  Google Scholar 

  • Mench M, Schwitzguebel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    CAS  Google Scholar 

  • Mingorance MD, Valdes B, Rossini OS (2007) Strategies of heavy metal uptake by plants growing under industrial emissions. Environ Int 33:514–520

    CAS  Google Scholar 

  • Morichetti M, Passerini G, Baltrėnas P, Baltrėnaitė E, Corvatta G (2017) Heavy metals uptake by trees near a waste incinerator. “Environmental Engineering” 10th International Conference, Vilnius Gediminas Technical University, Lithuania 27–28 April 2017.

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184:105–126

    CAS  Google Scholar 

  • Papaioannou D, Kalavrouziotis IK, Koukoulakis PH, Papadopoulos F, Psoma P (2017) Interrelationships of metal transfer factor under wastewater reuse and soil pollution. J Environ Manag. https://doi.org/10.1016/j.jenvman.2017.04.008

    CAS  Google Scholar 

  • Poschenrieder C, Tolrà R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11(6):288–295

    CAS  Google Scholar 

  • Prasad MNV (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50:686–700

    CAS  Google Scholar 

  • Prasad MNV (2005) Nickelophilous plants and their significance in phytotechnologies. Braz J Plant Physiol 17:113–128

    CAS  Google Scholar 

  • Prasad MNV (2006) Plants that accumulate and/or exclude toxic trace elements play an important role in phytoremediation. In: MNV P, Sajwan KS, Naidu R (eds) Trace elements in the environment. Biogeochemistry, biotechnology and bioremediation. Taylor and Francis, Boca Raton

    Google Scholar 

  • Prasad MNV (2008) Trace elements as contaminants and nutrients. In: Consequences in ecosystems and human health. Wiley & Sons, London

    Google Scholar 

  • Pulford ID, Dickinson NM (2006) Phytoremediation technologies using trees. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment. Biogeochemistry, biotechnology and bioremediation. Taylor and Francis, Boca Raton.

  • Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306

    CAS  Google Scholar 

  • Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal contaminated water and sediment by Eleocharis acicularis. Clean: Soil, Air, Water 39:735–741

    CAS  Google Scholar 

  • Schroeder P, Daubner D, Maier H, Neustifter J, Debus R (2008) Phytoremediation of organic xenobiotics – glutathione dependent detoxification in Phragmites plants from European treatment sites. Bioresour Technol 99(15):7183–7197

    CAS  Google Scholar 

  • Schwitzguébel JP, Braillard S, Page V, Aubert S (2008) Accumulation and transformation of sulfonated aromatic compounds by higher plants – toward the phytotreatment of wastewater from dye and textile industries. Chapter 16. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Verlag, pp 335–353

    Google Scholar 

  • Stravinskienė V (2010) Medžių būklės stebėsena ir vertinimas Kauno miesto aplinkoje. J Environ Eng Landsc Manag 18(3):217–225

    Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, Van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    CAS  Google Scholar 

  • Wilson B, Pyatt FB (2007) Heavy metal bioaccumulation by the important food plant, Olea europaea L., in an ancient metalliferous polluted area of Cyprus. Bull Environ Contam Toxicol 78:390–394

    CAS  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    CAS  Google Scholar 

  • Zacchini M, Pietrini F, Scarascia Mugnozza G, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34

    CAS  Google Scholar 

  • Zheng R, Chen Z, Cai C, Tie B, Liu X, Reid BJ, Huang Q, Lei M, Sun G, Baltrėnaitė E (2015) Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment — a field experiment in Hunan, China. Environ Sci Pollut Res 22(14):11,097–11,108

    CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Prof Dr Arvydas Lietuvninkas for his ideas in developing the dynamic factor method.

We dedicate this paper in memoriam to Prof Dr Habil Vida Stravinskienė, who was internationally recognized and outstanding Lithuanian researcher in bioindication and biomonitoring.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edita Baltrėnaitė.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltrėnaitė, E., Baltrėnas, P. Using the method of dynamic factors for assessing the transfer of chemical elements from soil to plants from various perspectives. Environ Sci Pollut Res 26, 34184–34196 (2019). https://doi.org/10.1007/s11356-018-3866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3866-1

Keywords

Navigation