Skip to main content

Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt

Abstract

This study was conducted to evaluate the ability of zinc oxide nanoparticles (ZONPs) with unique properties to protect tomato against the bacterial speck pathogen, caused by Pseudomonas syringae pv. tomato DC3000 (Pst). Protection of tomato against bacterial speck using ZONPS was evaluated by its direct antibacterial activity and its ability for inducing resistance in tomato plants. The results revealed that ZONPs showed significant direct antibacterial activity against Pseudomonas syringae pv. tomato under laboratory conditions. Moreover, tomato plants treated with ZONPs showed a significant reduction in disease severity and bacterial proliferation relative to non-treated plants. Furthermore, tomato plants treated with ZONPs showed higher self-defense enzyme activity relative to untreated plants. The regulatory and defense genes, LePR-1a and Lipoxygenase (LOX), involved in the salicylic acid (SA) and (JA) signaling pathways, respectively, were highly expressed in tomato plants treated with ZONPs compared to untreated plants. Growth characters of tomato plants treated with ZONPs were significantly enhanced relative to untreated plants. The control of bacterial speck pathogen of tomato using ZONPs through its direct antibacterial and by developing of systemic resistance in treated tomatoes against the pathogen is considered the first report.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aime S, Alabouvette C, Steinberg C, Olivain A (2013) The endophytic strain Fo47: a good candidate for priming the defense response in tomato roots. Mol Plant Microbiol Interact 26:918–926. https://doi.org/10.1094/MPMI-12-12-0290-R

    CAS  Article  Google Scholar 

  2. Akhtar MJ, Kumar AM, Khan MM, Ahmad J, Alrokayan SA (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Inter J of Nanomed 7:845–857. https://doi.org/10.2147/IJN.S29129 Epub 2012 Feb 21

    CAS  Article  Google Scholar 

  3. Aruoja V, Dubourguier H, Kasamets C, Kahru KA (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae, Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468. https://doi.org/10.1016/j.scitotenv.2008.10.053

    CAS  Article  Google Scholar 

  4. Barik TK, Sahu B, Swain V (2008) Nanosilica-from medicine to pest control. Parasitol Res 103:253–258. https://doi.org/10.1007/s00436-008-0975-7

    CAS  Article  Google Scholar 

  5. Batsmanova LM, Gonchar LM, Taran NY, Okanenko AA (2013) Using a colloidal solution of metal nanoparticles as micronutrient fertilizer for cereals, Proceedings of the International Conference Nanomaterials, 2, no. 4, 2 pages.

  6. Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22(11):604–610. https://doi.org/10.1016/j.tifs.2011.01.002

    CAS  Article  Google Scholar 

  7. Bryan MK (1933) Bacterial speck of tomatoes. Phytopathol 23:897–904

    Google Scholar 

  8. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit & Cont Part A 25(3):241–258. https://doi.org/10.1016/j.tifs.2011.01.002

    CAS  Article  Google Scholar 

  9. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D'Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262. https://doi.org/10.1021/cm0505244

    CAS  Article  Google Scholar 

  10. Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16: 582-589. doi.org/10.1016/j.tplants.2011.08.003.

    CAS  Article  Google Scholar 

  11. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. BioMet 26:913–924. https://doi.org/10.1007/s10534-013-9667-6

    CAS  Article  Google Scholar 

  12. Divyapriya S, Sowmia C, Sasikala S (2014) Synthesis of zinc oxide nanoparticles and antimicrobial activity of murraya koeiniggi. World J of Pharm and Phram Sci 3: 12. In: 1 1635 -1645

    Google Scholar 

  13. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water suspended nanoparticles. Physiol Plant 134:151–160. https://doi.org/10.1111/j.1399-3054.2008.01135.x

    CAS  Article  Google Scholar 

  14. Elizabath A, Bahadur V, Misra P, Prasad VM, Thomas T (2017) Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of carrot (Daucus carota L.). J of Pharm and. Phytochem 6(4):1266–1269

    Google Scholar 

  15. Elsharkawy MM, Mousa KM (2015) Induction of systemic resistance against Papaya ring spot virus (PRSV) and its vector Myzus persicae by Penicillium simplicissimum GP17-2 and silica (Sio2) nanopowder. Int J Pest Manag 61: 353- 358. doi.org/10.1080/09670874.2015.1070930

    CAS  Article  Google Scholar 

  16. Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M (2012) Induction of systemic resistance against Cucumber mosaic virus by Penicillium simplicissimum GP17-2 in Arabidopsis and tobacco. Plant Pathol 61: 964-976. doi.org/10.1111/j.1365-3059.2011.02573.x.

    CAS  Article  Google Scholar 

  17. Huang L, Dian-Qing L, Yan-Jun W, Min David G, Xueb ED (2005) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorganic. Biochem 99:986–993. https://doi.org/10.1016/j.jinorgbio.2004.12.022

    CAS  Article  Google Scholar 

  18. Idrees M, Naeem N, Aftab T, Khan MM, Moinuddin A (2011) Salicylic acid mitigates salinity stress by improving antioxidant defense system and enhances vincristine and vinblastine alkaloids production in periwinkle. Acta Physiol Plant 33:987–999. https://doi.org/10.1007/s11738-010-0631-6

    CAS  Article  Google Scholar 

  19. Ippolito A, El Ghaouth A, Wilson CL, Wisniewski M (2000) Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biol Technol 19:265–272. https://doi.org/10.1016/S0925-5214(00)00104-6

    CAS  Article  Google Scholar 

  20. Ibupoto ZH, Khun K, Eriksson M, AlSalhi M, Atif M, Ansari A, Willander M (2013) Hydrothermal growth of vertically aligned ZnO nanorods using a biocomposite seed layer of ZnO nanoparticles. Mater 6:3584–3597. https://doi.org/10.3390/ma6083584

    CAS  Article  Google Scholar 

  21. Jung JH, Kim S, Min J, Kim Y, Lamsal K, Kim KS, Lee YS (2010) The effect of nano-Silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiol (1):39–45. https://doi.org/10.4489/MYCO.2010.38.1.039

    CAS  Article  Google Scholar 

  22. Li Y, Yang D, Cui J (2017) Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against Pseudomonas syringae pv. tomato. RSC Adv 7:38853–38,860. https://doi.org/10.1039/C7RA05520J

    CAS  Article  Google Scholar 

  23. Lin JH, Patil RA, Devan RS, Liu ZA, Wang YP, Ho CH, Ma YR (2014) Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons, and metal-semiconductor Zn/ZnO nanospheres. Sci Rep 4(6967):1–8. https://doi.org/10.1038/srep06967

    CAS  Article  Google Scholar 

  24. Martin HL, Hamilton VA, Kopittke RA (2004) Copper-tolerance in Australian populations of Xanthomonas campestris pv. vesicatoria contributes to poor field control of bacterial spot of pepper. Plant Dis 88:921–924. https://doi.org/10.1094/PDIS.2004.88.9.921

    CAS  Article  Google Scholar 

  25. Maxwell DP, Batman DF (1967) Changes in the activities of some oxidases in extracts of Rhizoctonia infected bean hypocotyls in relation to lesion maturation. Phytophath 57:132

    CAS  Google Scholar 

  26. Milani N, Hettiarachchi GM, Kirby JK, Beak DG, Stacey SP, McLaughlin MJ (2015) Fate of zinc oxide nanoparticles coated onto macronutrient fertilizers in an alkaline calcareous soil. PLoS One 10(5). https://doi.org/10.1371/journal.pone.0126275

    Article  CAS  Google Scholar 

  27. Miller SA, Jones JB (2014) Diseases caused by bacteria. In: Jones JB, Zitter T, Momol MT, Miller SA, (Eds.), Compendium of tomato diseases and pests, 2 ed. The American Phytopathological Society.

  28. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramırez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16:2346–2353. https://doi.org/10.1088/0957-4484/16/10/059

    CAS  Article  Google Scholar 

  29. Navale GR, Thripuranthaka M, Late DJ, Shinde SS (2015) Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol Nanomed 3(1):1033

    Google Scholar 

  30. Pandey AC, Sanjay S, Yadav R (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5(6):488–497. https://doi.org/10.1080/17458081003649648

    CAS  Article  Google Scholar 

  31. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica–silver for control of various plant diseases. Plant Pathol J 22:25–34. https://doi.org/10.5423/PPJ.2006.22.3.295

    Article  Google Scholar 

  32. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

    CAS  Article  Google Scholar 

  33. Raikova OP, Panichkin, LA, Raikova NN (2006) Studies on the effect of ultrafine metal powders produced by different methods on plant growth and development. Nanotechnologies and information technologies in the 21st century, in Proceedings of the International Scientific and Practical Conference, pp. 108–111, Moscow, Russia.

  34. Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Global Biosci 3:415–422

    Google Scholar 

  35. Salam MA, Obaid AY, El-Shishtawy R, Mohamed SA (2017) Synthesis of nanocomposites of polypyrrole/carbon nanotubes /silver nano particles and their application in water disinfection. RSC Adv 7:16878–16884. https://doi.org/10.1039/C7RA01033H

    Article  Google Scholar 

  36. Sanchez-Ferrer A, Bru R, Cabanes J, Garcia-Carmona F (1988) Characterization of catecholase and cresolase activities of grape polyphenol oxidase. Phytochem 27(2):319–320

    CAS  Article  Google Scholar 

  37. Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J of Microbiol Meth 54(2):177–182

    CAS  Article  Google Scholar 

  38. Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Annal West University Timisoara series Biol XVI 2:73–78

    Google Scholar 

  39. Shah MA, Towkeer A (2010) Principles of nanosciences and nanotechnology. Naroosa Publishing House, New Delhi

    Google Scholar 

  40. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96. https://doi.org/10.1016/j.cis.2008.09.002

    CAS  Article  Google Scholar 

  41. Shenge KC, Wydra K, Mabagala RB, Mortensen CN (2008) Assessment of strains of Pseudomonas syringae pv. tomato from Tanzania for resistance to copper and streptomycin. Arch Phytopathol Plant Protect 41:572–585. https://doi.org/10.1080/03235400600881851

    CAS  Article  Google Scholar 

  42. Sirelkhatim AS, Mahmud A, Seeni NM, Kaus LC, Ann SK, Bakhori H, Hasan DM (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7(3):219–242. https://doi.org/10.1007/s40820-015-0040-x

    CAS  Article  Google Scholar 

  43. Soni BH, Deshpande MP, Bhatt SV, Garg N, Chaki SH (2013) Studies on ZnO nanorods synthesized by hydrothermal method and their characterization. J of Nano-and Electronic Physic 5(4):4077–7081

    Google Scholar 

  44. Sourabh D, Rizwan W, Farheen K, Yogendra KM, Javed M, Abdulaziz AA (2014) Reactive oxygen species-mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One 9:111–289. https://doi.org/10.1371/journal.pone.0111289

    CAS  Article  Google Scholar 

  45. Stangarlin JR, Kuhn OJ, Toledo MV, Portz RL, Schwan-Estrada KRF, Pascholati SF (2011) Plant Defense against Pathogens. Scientia Agraria Paranaensis 10:18–46

    Google Scholar 

  46. Sunada K, Kikuchi Y, Hashimoto K, Fujishima A (1998) Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol 32:726–728

    CAS  Article  Google Scholar 

  47. Taheri M, Qarache HA, Qarache AA, Yoosef M (2015) The effects of zinc-oxide nanoparticles on growth parameters of corn (SC704). Nanoparticles 1(2):17–20. https://doi.org/10.1186/1471-2164-10-289

    CAS  Article  Google Scholar 

  48. Valero E, Varon R, Garcia-Carmona F (1988) Characterization of polyphenol oxidase from Airen grapes. J Food Sci 53:1482–1485

    CAS  Article  Google Scholar 

  49. Yunis H, Bashan Y, Okon Y, Henis Y (1980) Two sources of resistance to bacterial speck of tomato caused by Pseudomonas tomato. Plant Dis 64:937–939

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aly Derbalah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Giovanni Benelli

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elsharkawy, M., Derbalah, A., Hamza, A. et al. Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt. Environ Sci Pollut Res 27, 19049–19057 (2020). https://doi.org/10.1007/s11356-018-3806-0

Download citation

Keywords

  • Tomato
  • Bacterial speck
  • Nanoparticles
  • Systemic resistance induction
  • Control