Skip to main content
Log in

Sources and distribution of 241Am in the vicinity of a deep geologic repository

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The detection, distribution, and long-term behavior of 241Am in the terrestrial environment at the Waste Isolation Pilot Plant (WIPP) site were assessed using historical data from an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC), and its predecessor organization the Environmental Evaluation Group (EEG). An analysis of historical data indicates frequent detections of trace levels of 241Am in the WIPP environment. Positive detections and peaks in 241Am concentrations in ambient air samples generally occur during the March to June timeframe, which is when strong and gusty winds in the area frequently give rise to blowing dust. A study of long-term measurements of 241Am in the WIPP environment suggest that the resuspension of previously contaminated soils is likely the primary source of americium in the ambient air samples from WIPP and its vicinity. Furthermore, the 241Am/239 + 240Pu ratio in aerosols and soils was reasonably consistent from year to year and was in agreement with the global fallout ratios. Higher than normal activity concentrations of 241Am and 241Am/239 + 240Pu ratios were measured in aerosol samples during 2014 as a result of February 14, 2014 radiation release event from the WIPP underground. However, after a brief spike, the activity concentrations of 241Am have returned to the normal background levels. The long-term monitoring data suggest there is no persistent contamination and no lasting increase in radiological contaminants in the region that can be considered significant by any health-based standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aarkrog A (1988a) Studies of Chernobyl debris in Denmark. Environ Int 14:149–155

    Article  CAS  Google Scholar 

  • Aarkrog A (1988b) The radiological impact of the Chernobyl debris compared with that from nuclear weapons fallout. J Environ Radioact 6:151–162

    Article  CAS  Google Scholar 

  • Aarkrog A, Dahlgaard H, Nilsson K (1984) Further studies of plutonium and americium at Thule, Greenland. Health Phys 46:29–44

    Article  CAS  Google Scholar 

  • Alvarado JAC, Steinmann P, Estier S, Bochud F, Haldimann M, Froidevaux P (2014) Anthropogenic radionuclides in atmospheric air over Switzerland during the last few decades. Nature Com 5:3030. https://doi.org/10.1038/ncomms4030

    Article  CAS  Google Scholar 

  • Anspaugh LR, Shinn JH, Phelps PL, Kennedy NC (1975) Resuspension and redistribution of plutonium in soils. Health Phys 29:571–582

    Article  CAS  Google Scholar 

  • Eberhart CF (1998) Ambient air sampling for radioactive air contaminants at Los Alamos National Laboratory: A large research and development facility. LA-UR-98-897, Los Alamos National Laboratory, Los Alamos, NM

  • Arimoto R, Webb JL, Conley M (2005) Radioactive contamination of atmospheric dust over southeastern New Mexico. Atom Environ 39:4745–4754

    Article  CAS  Google Scholar 

  • Arnold D, Wershofen H (2000) Plutonium isotopes in ground-level air in Northern Germany since 1990. J Radioanal Nucl Chem 243:409–413

    Article  CAS  Google Scholar 

  • Baskaran M, Asbill S, Santschi P, Davis T, Brooks J, Champ M, Makeyev V, Khlebovich V (1995) Distribution of 239,240Pu and 238Pu concentrations in sediments from the Ob and Yenisey Rivers and the Kara Sea. Appl Radiat Isot 46(11):1109–1119

    Article  CAS  Google Scholar 

  • Beasley TM, Kelley JM, Orlandini KA, Bond LA, Aarkrog A, Trapeznikov AP, Pozolotina VN (1998) Isotopic Pu, U, and Np signatures in soils from Semipalatinsk-21, Kazakh Republic and the southern Urals, Russia. J Environ Radioact 39:215–230

    Article  CAS  Google Scholar 

  • Bennett B.G (1979). Environmental aspects of americium. Rep. EML-348, Environmental Measurements Laboratory, U.S. Department of Energy, New York, New York

  • Boulyga SF, Zoriy M, Michael E, Ketterer ME, Becker JS (2003) Depth profiling of Pu, 241Am and 137Cs in soils from southern Belarus measured by ICP-MS and α and γ spectrometry. J Environ Monit 5:661–666

    Article  CAS  Google Scholar 

  • Breban DC, Moreno J, Mocanu N (2003) Activities of Pu radionuclides and 241Am in soil samples from an alpine pasture in Romania. J Radioanal Nucl Chem 258:613–617

    Article  CAS  Google Scholar 

  • Bunzl K, Kracke W (1988) Cumulative deposition of 137Cs, 238Pu, 239+240Pu and 241Am from global fallout in soils from forest, grassland and arable land in Bavaria (FRG). J Environ Radioact 8:1–14

    Article  CAS  Google Scholar 

  • Burns PA, Cooper MB, Lokan KH, Wilks MJ, Williams GA (1995) Characteristics of plutonium and americium contamination at the former UK atomic weapons test ranges at Maralinga and Emu. Appl Radiat Isot 46:1099–1107

    Article  CAS  Google Scholar 

  • Carlsbad Environmental Monitoring and Research Center (CEMRC) (1998) 1997 Report Carlsbad Environmental Monitoring & Research Center Waste-management Education & Research Consortium (WERC), New Mexico State University, Carlsbad, NM.

  • Carlsbad Environmental Monitoring and Research Center (CEMRC) (2006) Annual report. New Mexico State University, Carlsbad, NM

    Google Scholar 

  • Carlsbad Environmental Monitoring and Research Center (CEMRC) (2014) Annual report. New Mexico State University, Carlsbad, NM

    Google Scholar 

  • Cooper MB, Burns PA, Tracy BL, Wilks MJ, Williams GA (1994) Characterization of plutonium contamination at the former nuclear weapons testing range, at Maralinga in South Australia. J Radioanal Nucl Chem 177:161–184

    Article  CAS  Google Scholar 

  • Dares CJ, Lapides AM, Mincher BJ, Meyer TJ (2015) Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode. Science 350:652–655

    Article  CAS  Google Scholar 

  • EPA (1976) Americium - Its behavior in soil and plant systems. Las Vegas, NV: Office of Research and Development, U.S. Environmental Protection Agency. EPA600/3-76-005. PB250797

  • Eriksson M, Lindahl P, Roos P, Dahlgaard, H, Holm, E (2008) U, Pu, and Am nuclear signatures of the Thule hydrogen bomb debris. Environ Sci Technol 42:4717–4722

  • Evangeliou N, Zibtsev S, Myroniuk V, Zhurba M, Hamburger T, Stohl A, Balkanski Y, Paugam R, Mousseau TA, Møller AP, Kireev SI (2016) Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: an impact assessment. Sci Rep 6:26062. https://doi.org/10.1038/srep26062.

    Article  CAS  Google Scholar 

  • Faller F (1994) Residual soil radioactivity at the gnome test site in Eddy County, New Mexico, report no. EPA 600/R-94/117, July 1994. Washington, DC, Environmental Protection Agency

  • Gray DH, Kenney JW, Ballard SC (2000) Operational Radiation Surveillance of the WIPP Project by EEG During 1999. EEG-79, Environmental Evaluation Group, Albuquerque

  • Guogang J, Testa C, Desideri D, Roselli C (1998) Sequential separation and determination of plutonium, americium-241 and strontium-90 in soils and sediments. J Radioanal Nucl Chem 230:21–27

    Article  Google Scholar 

  • Hardy EP, Krey PW, Volchok HL (1973) Global inventory and distribution of fallout plutonium. Nature 241:444–445

    Article  CAS  Google Scholar 

  • Hindman FD (1986) Actinide separations for alpha spectrometry using neodymium fluoride coprecipitation. Anal Chem 56:1238–1241

    Article  Google Scholar 

  • Hirose K, Igarashi Y, Aoyama M, Kim CK, Kim CS, Chang BW (2003) Recent trends of plutonium fallout observed in Japan: plutonium as a proxy for desertification. J Environ Monit 5:302–307

    Article  CAS  Google Scholar 

  • Hirose K, Kim CK, Kim CS, Chang BW, Igarashi Y, Aoyama M (2004) Wet and dry deposition patterns of plutonium in Daejeon, Korea. Sci Total Environ 332:243–252

    Article  CAS  Google Scholar 

  • Hodge V, Smith C, Whiting J (1996) Radiocesium and plutonium: still together in “background” soils after more than thirty years. Chemosphere 32:2067–2075

    Article  CAS  Google Scholar 

  • Holgye Z, Schlesingerova E, Tecl J, Filgas R (2004) 238Pu and 239+240Pu, 241Am, 90Sr and 137Cs in the soils around nuclear research center REZ, near Prague. J Environ Radioact 71:115–125

    Article  CAS  Google Scholar 

  • Holgye Z, Filgas R (1987) Determination of 239+240Pu in surface air in several localities in Czechoslovakia in 1986 in connection with the Chernobyl radiation accident. J Radioanal Nucl Chem 119:21–28

    Article  CAS  Google Scholar 

  • Hollander W (1994) Resuspension factors of 137Cs in Hannover after the Chernobyl accident. J Aerosol Sci 25:789–792

    Article  Google Scholar 

  • Hulse SE, Ibrahim SA, Whicker FW, Chapman PL (1999) Comparison of 241Am, 239,240Pu and 137Cs concentrations in soil around rocky flats. Health Phys 76:275–287

    Article  CAS  Google Scholar 

  • Hayes RB, Akbarzadeh M (2014) Using isotopic ratios for discrimination of environmental anthropogenic radioactivity. Health Phys 107:277–291

    Article  CAS  Google Scholar 

  • Irlweck K, Hrnecek E (1999) 241Am concentration and 241Pu/239(240) Pu ratios in soils contaminated by weapons-grade plutonium. J Radioanal Nucl Chem 242:595–599

    Article  CAS  Google Scholar 

  • Irlweck K, Wicke J (1998) Isotopic composition of plutonium immissions in Austria after the Chernobyl accident. J Radioanal Nucl Chem 227:133–136

    Article  CAS  Google Scholar 

  • Jia C, Testa C, Desideri D, Guerra F, Roselli MA, Belli ME (1999) Soil concentration, vertical distribution and inventory of plutonium, 241Am, 90Sr and 137Cs in the Merche region of Central Italy. Health Phys 77:52–61

    Article  CAS  Google Scholar 

  • Kenney JW, Downes PS, Gray DH, Ballard SC (1995) Radionuclide baseline in soil near project gnome and the waste isolation pilot plant. EEG-58, Environmental Evaluation Group, Albuquerque, NM

  • Knatko VA, Mayall A, Drugachenok MA, Matveenko II, Mironov VP (1993) Radiation doses in southern Byelorussia from the inhalation of specific radionuclides following the Chernobyl accident. Radiat Prot Dosim 48:179–183

    CAS  Google Scholar 

  • Krey PW, Hardy EP, Pachucki C, Rourke F, Coluzza J, Benson WK (1976) Mass isotopic composition of global fallout plutonium in soil. Transuranic nuclides in the environment. IAEA-SM-199/39. Vienna: IAEA, p. 671–678.

  • Lee MH, Clark S (2005). Activities of Pu and Am isotopes and isotopic ratios in a soil contaminated by weapons-grade plutonium, 39: 5512–5516

  • Lee SC, Orlandini KA, Webb J, Schoep D, Kirchner T, Fingleton DJ (1998) Measurement of baseline atmospheric plutonium-239, 240 and americium-241 in the vicinity of the waste isolation pilot plant. J Radioanal Nucl Chem 234:267–272

    Article  CAS  Google Scholar 

  • Lehto J, Salminen S, Jaakkola T, Outola I, Pulli S, Paatero J, Tarvainen M, Ristonmaa S, Zilliacus R, Ossintsev A, Larin V (2006) Plutonium in the air in Kurchatov, Kazakhstan. Sci Total Environ 366:206–217

    Article  CAS  Google Scholar 

  • Lemons B, Khaing H, Ward A, Thakur P (2018) A rapid method for the sequential separation of polonium, plutonium, americium and uranium in drinking water. Appl Radiat Isot 136:10–17.

    Article  CAS  Google Scholar 

  • Leon Vintro L, Mitchell PI, Condren OM, Downes AB, Papucci C, Delfanti R (1999) Vertical and horizontal fluxes of plutonium and americium in the western Mediterranean and the Strait of Gibraltar. Sci Total Environ 237/238:77–91

    Article  Google Scholar 

  • Litaor MI (1995) Spatial analysis of plutonium-239+ 240 and americium-241 in soils around Rocky Flats, Colorado. J Environ Qual 24:506–516

    Article  CAS  Google Scholar 

  • Litaor M, Allen LA (1996) Comprehensive appraisal of 241Am in soils around Rocky Flats, Colorado. Health Phys 71:347–357

    Article  CAS  Google Scholar 

  • Livens FR, Singleton DL (1991) Plutonium and americium in soil organic matter. J Environ Radioact 13:323–339

    Article  CAS  Google Scholar 

  • Łokas EJW, Mietelski JW, Ketterer ME, Kleszcz K, Wachniew P, Michalska S, Miecznik M (2013) Sources and vertical distribution of 137Cs, 238Pu, 239+240Pu and 241Am in peat profiles from southwest Spitsbergen. Appl Geochem 28:100–108

    Article  CAS  Google Scholar 

  • Lujanienė G, Aninkevičius V, Lujanas V (2009) Artificial radionuclides in the atmosphere over Lithuania. J Environ Radioact 100:108–119

  • Lujaniené G, Valiulis D, Bycenkiene S, Sakalys J, Povinec PP (2012a) Plutonium isotopes and 241Am in the atmosphere of Lithuania: a comparison of different source terms. Atmos Environ 61:419–427

    Article  CAS  Google Scholar 

  • Lujaniené G, Bycenkiene S, Povinec PP, Gera M (2012b) Radionuclides from the Fukushima accident in the air over Lithuania e measurement and modeling approaches. J Environ Radioact 114:71–80

    Article  CAS  Google Scholar 

  • Lujaniene G, Sapolaite J, Remeikis V, Lujanas V, Jermolajev A (2006) Cesium, americium and plutonium isotopes in ground level air of Vilnius. Czech J Phys Suppl D 56:D55–D66

    Article  CAS  Google Scholar 

  • Lujaniene G, Lujanas V, Jankunaite D, Ogorodnikov BI, Mastauskas A, Ladygiene R (1999) Speciation of radionuclides of the Chernobyl origin in aerosol and soil samples. J Environ Radioact 49:107–114

    CAS  Google Scholar 

  • Manić-Kudra S, Paligorić D, Novković D, Smiljanić R, Milošević Z, Subotić K (1995) Plutonium isotopes in the surface air at Vinča-Belgrade site in May 1986. J Radioanal Nucl Chem 199:27–34

    Article  Google Scholar 

  • Mboulou MO, Hurtgen C, Hofkens K, Vandecasteele C (1998) Vertical distributions in the Kapachi soil of the plutonium isotopes (238Pu, 239,240Pu, 241Pu), of 241Am, and of 243,244Cm, eight years after the Chernobyl accident. J Environ Radioact 39:231–237

    Article  CAS  Google Scholar 

  • Menut L, Masson O, Bessagnet B (2009) Contribution of Saharan dust on radionuclide aerosol activity levels in Europe? The 21-22 February 2004 case study. J Geophys Res 114:D16202

    Article  CAS  Google Scholar 

  • Mietelski JW, Kubica B, Gaca P, Tomankiewicz E, Blazej S, Tuteja-Krysa M, Stobiski M (2007) 238Pu, 239+240Pu, 241Am, 90Sr and 137Cs in mountain soil samples from the Tatra National Park (Poland). J Radioanal Nucl Chem 275:523–533

    Article  CAS  Google Scholar 

  • Muramatsu Y, Hamilton T, Uchida S, Tagami K, Yoshida S, Robison W (2001) Measurement of 240Pu/239Pu isotopic ratios in soils from the Marshall Islands using ICP-MS. Sci Total Environ 278:151–159

    Article  CAS  Google Scholar 

  • Paatero J, Hameri K, Jaakkola T, Jantunen M, Koivukoski J, Saxen R (2010) Airborne and deposited radioactivity from the Chernobyl accident—a review of investigations in Finland Boreal. Environ Res 15:19–33

    CAS  Google Scholar 

  • Perkins RW, Thomas CW (1980) Worldwide fallout. In: Hanson WC (ed) Transuranic elements in the environment. Technical Information Center, US Dept of Energy, Springfield, pp 53–82.

  • Pham MK, Chamizo E, Balbuena JLM, Juan-Carlos Miquel JC, Martín J, Osvath I, Pavel P, Povinec PP (2017) Impact of Saharan dust events on radionuclide levels in Monaco air and in the water column of the northwest Mediterranean Sea. J Environ Radioact 166:2–19

    Article  CAS  Google Scholar 

  • Poet SE, Martell EA (1972) Plutonium-239 and americium-241contamination in the Denver area. Health Phys 23:537–548

    Article  CAS  Google Scholar 

  • Popov L, Mihailova G, Naidenov I (2010) Determination of activity ratios of 238, 239+240, 241Pu, 241Am 134, 137Cs and 90Sr in Bulgarian soils. J Radioanal Nucl Chem 285:223–237

    Article  CAS  Google Scholar 

  • Poston TM, Hanf RW, Dirkes RL and Morasch LF (2002) Hanford site environmental report for calendar year 2000. PNNL-13910, Pacific Northwest National Laboratory, Richland

  • Price RR (1991) The depth distribution of 90Sr, 137Cs, and 239,240Pu in soil profile samples. Radiochim Acta 54:145–147

    Article  CAS  Google Scholar 

  • Reiter ER (1975) Stratospheric-tropospheric exchange processes. Rev Geophys Space Phys 4:459–474

    Article  Google Scholar 

  • Roos P, Holm E, Persson RBR, Aarkrog A, Nielsen SP (1994) Deposition of 210Pb, 137Cs, 239+240Pu, 238Pu, and 241Am in the Antarctic Peninsula area. J Environ Radioact 24:235–251

    Article  CAS  Google Scholar 

  • Salminen S, Paatero J (2009) Concentrations of 238Pu, 239+240Pu and 241Pu in the surface air in Finnish Lapland in 1963. Boreal Environ Res 14:827–836

    CAS  Google Scholar 

  • Sehmel GA (1987) Transuranic resuspension. In: Pinter JE III, Alberts JJ, McLeod KW, Schreckhise RG (eds) Environmental research on actinide elements. Office of Science and Technical Information; CONF-841142, Washington, DC, pp 157–192

    Google Scholar 

  • Sha L, Yamamoto M, Kumura K, Ueno K (1991) 239+240Pu, 241Am and 137Cs in soils from several areas in China. J Radioanal Nucl Chem Lett 155:45–53

    Article  CAS  Google Scholar 

  • Shinn JH, Homan DN, Robison WL (1997) Resuspension studies in the Marshall Islands. Health Phys 73:248–257

    Article  CAS  Google Scholar 

  • Shinonaga T, Steier P, Lagos M, Ohkura T (2014) Airborne plutonium and non-natural uranium from the Fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions. Environ Sci Technol 48:3808–3814

    Article  CAS  Google Scholar 

  • Solovitch-Vella N, Pourcelot L, Chen VT, Froidevaux P, Gauthier-Lafaye F, Stille P, Aubert D (2007) Comparative migration behavior of Sr-90, Pu-239+240 and Am-241 in mineral and organic soils of France. Appl Geochem 22:2526–2535

    Article  CAS  Google Scholar 

  • Srncik M, Wallner G, Hrnecek E, Steier P, Wallner A, Bossew P (2008) Vertical distribution of 238Pu, 239(40)Pu, 241Am, 90Sr and 137Cs in Austrian soil profiles. Radiochim Acta 96:733–738

    Article  CAS  Google Scholar 

  • Stout JE, Arimoto R (2010) Threshold wind velocities for sand movement in the Mescalero Sands of southeastern New Mexico. J Arid Environ 74:1456–1460

    Article  Google Scholar 

  • Thakur P, Ballard S, Nelson R (2012) Plutonium in the WIPP environment: its detection, distribution and behavior. J Environ Monit 14:1604–1615

    Article  CAS  Google Scholar 

  • Thakur P, Lemons BG, White CR (2016) The magnitude and relevance of the February 2014 radiation release from the waste isolation pilot plant repository in New Mexico, USA. Sci Total Environ 565:1124–1137

    Article  CAS  Google Scholar 

  • Thurston J (2010) NCRP Report No. 160: ionizing radiation exposure of the population of the United States, National Council on Radiation Protection and Measurements, Bethesda

  • Turner M, Rudin M, Cizdziel J, Hodge V (2003) Excess plutonium in soil near the Nevada Test Site, USA. Environ Pollut 125:193–203

    Article  CAS  Google Scholar 

  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000, Sources and effects of ionizing radiation, Report to the General Assembly, with Scientific Annexes Vol. I United Nations, New York

  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 1982, Sources and effects of ionizing radiation, Report to the General Assembly, Annexe E. United Nations, New York.

  • USAEC (1973) Gnome/Coach site disposal options. U.S. Atomic Energy Commission NVO-131, Las Vegas, NV

    Google Scholar 

  • USDOE (2014) Title 40 CFR Part 191 Subparts B and C Compliance Recertification Application 2014.DOE/WIPP-14-3503. SOTERM-III. Appendix SOTERM-2014.

  • USDOE (2015). U.S. Department of Energy Accident Investigation Report, Phase-II. Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014. Washington, DC: U.S. Department of Energy. Accessible at: http://www.wipp.energy.gov/Special/AIB_WIPP%20Rad_Event%20Report_Phase%20II.pdf

  • USDOE (1995) Geochemical characterization of background surface soils: background soils characterization program. Rocky Flats Environmental Technology Site, Golden CO

    Google Scholar 

  • USDOE (2014) Waste Isolation Pilot Plant Annual Site Environmental Report for 2014. DOE/WIPP-15-8866, Carlsbad Field Office, Carlsbad

  • Wang Z, Yang G, Zheng J, Cao L, Yu H, Zhu Y, Tagami K, Uchida S (2015) Effect of ashing temperature on accurate determination of plutonium in soil samples. Anal Chem 87:5511–5515

    Article  CAS  Google Scholar 

  • Welch JM, Mgller D, Knoll C, Wilkovitsch M, Giester G, Ofner J, Lendl B, Weinberger P, Georg Steinhauser G (2017) Picomolar traces of americium(III) introduce drastic changes in the structural chemistry of terbium(III): a break in the “gadolinium break”. Angew Chem Int Ed 56:13264–13269

    Article  CAS  Google Scholar 

  • WIPP Land Withdrawal Act (Public Law 102-579). The Waste Isolation Pilot Plant Land Withdrawal Act as amended by public law 104-201 (H.R. 3230, 104th congress).

  • Wotawa G, De Geer L-E, Becker A, D’Amours R, Jean M, Servranckx R, Ungar K (2006) Inter- and intra-continental transport of radioactive cesium released by boreal forest fires. Geophys Res Lett 33:L12806

    Article  CAS  Google Scholar 

  • Yamamoto M, Komura K, Sakanoue M (1983) 241Am and plutonium in Japanese rice-field surface soils. J Radiat Res 24:237–249

    Article  CAS  Google Scholar 

  • Yamamoto M, Tsukatani T, Katayama Y (1996) Residual radioactivity in the soil of the Semipalatinsk-21 Nuclear Test Site in the former USSR. Health Phys 71:142–148

    Article  CAS  Google Scholar 

  • Yammoto M, Tsumura A, Katayama Y, Tsukatani T (1996) Plutonium isotopic composition in soil from the former Semipalatinsk Nuclear Test Site. Radiochim Acta 72:209–215

    Google Scholar 

Download references

Acknowledgements

This research is supported by grant from US Department of Energy, Carlsbad Field Office of DOE through Grant No. DE-EM 0002423. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punam Thakur.

Additional information

Responsible editor: Georg Steinhauser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P., Ward, A.L. Sources and distribution of 241Am in the vicinity of a deep geologic repository. Environ Sci Pollut Res 26, 2328–2344 (2019). https://doi.org/10.1007/s11356-018-3712-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3712-5

Keywords

Navigation