Skip to main content
Log in

In situ genotoxicity assessment in freshwater zooplankton and sediments from different dams, ponds, and temporary rivers in Tunisia

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Tunisia water resources are limited. The country currently has 29 large dams, more than 1000 hill lakes, and 220 small dams which are essential for economic and social development given their contribution to irrigation, drinking water consumption, flooding protection, production of electrical energy, groundwater recharge, and industrial uses. Given the scarcity of these resources, it is crucial to be able to ensure the quality of freshwater environments, particularly those intended for human consumption. In this study, we meant to assess the health status of various freshwater ecosystems in different regions of Tunisia (north and center west) in order to detect genotoxic components in sediments and their potential effect on zooplankton (cladocerans). Sediment and cladoceran species were collected from dams, ponds, and temporary rivers in Tunisia. For each collection site, micronucleus (MN) assay was performed, in triplicates, using a pool of ten specimens of the same cladoceran species. MN occurrence in cladocerans varied from one site to another and MN frequencies varied between 0.67 and 22‰, suggesting the presence of genotoxic substances in certain sites. Sediment genotoxicity and mutagenicity were assessed using the SOS Chromotest and the Ames test. Sediment results showed that genotoxicity varies from one site to another displaying a quantitative and a qualitative variation of pollutant among the sites. These results suggest an urgent need for continuous monitoring of freshwater environments in Tunisia, particularly those intended for drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ayari J, Arfaoui M, Loukil C, Ouirou M (2012) Impact d’un site minier abandonné sur l’environnement : cas de la mine de Khanguet Kef Ettout (la région de Nefza), 17ème Colloque international en évaluation environnementale, 12–15 juin 2012, Montréal

  • Barka S, Ouanes Z, Gharbi A, Gdara I, Mouelhi S, Hamza-Chaffai A (2016) Monitoring genotoxicity in freshwater microcrustaceans: a new application of the micronucleus assay. Mut Res 803–804:27–33

    Article  CAS  Google Scholar 

  • Bejaoui Kefi B, Latrous El Atrache L, Kochkar H, Ghorbel A (2011) TiO2 nanotubes as solid-phase extraction adsorbent for the determination of polycyclic aromatic hydrocarbons in environmental water samples. J Environ Sci 23:860–867

    Article  CAS  Google Scholar 

  • Bouhlel S (2007) Les ressources en plomb, zinc, fer, argent, cuivre, or , barytine, fluorine et célestite de la Tunisie : un bilan de 117 ans de recherches, d’explorations et d’exploitations, XVIIèmes Journées Nationales de la SSNT November 03–06, Hammamet

  • Bour A, Mouchet F, Cadarsi S, Silvestre J, Baqué D, Gauthier L, Pinelli E (2017) CeO2 nanoparticle fate in environmental conditions and toxicity on a freshwater predator species: a microcosm study. Environ Sci Pollut Res 24:17081–17089

    Article  CAS  Google Scholar 

  • Burdon RH (2003) The suffering gene: environmental threats to our health. Zed books Ltd, New York, p 255

    Google Scholar 

  • Cachot J, Geffard O, Augagneur S, Lacroix S, Le Menach K, Peluhet L, Couteau J, Denier X, Devier MH, Pottier D, Budzinski H (2006) Evidence of genotoxicity related to high PAH content of sediments in the upper part of the Seine estuary (Normandy, France). Aquat Toxicol 79:257–267

    Article  CAS  Google Scholar 

  • Camargo JA (2003) Fluoride toxicity to aquatic organisms: a review. Chemosphere 50:251–264

    Article  Google Scholar 

  • Carver JH, Hatch FT, Branscomb EW (1979) Estimating maximum limits to mutagenic potency from cytotoxic potency. Nature 279:154–156

    Article  CAS  Google Scholar 

  • Carver JH, Mitchell AD, Waters MD (1983) Relationship(s) between mutation and cytotoxicity induced in vitro. In: Waters MD, Sandhu SS, Lewtas J, Claxton L, Chernoff N, Nesnow S (eds) Short-term bioassays in the analysis of complex environmental mixtures III. environmental science research, vol 27. Springer, Boston, pp 229–244

    Google Scholar 

  • Casellato S, Del Piero S, Masiero L, Covre V (2013) Fluoride toxicity and its effects on gametogenesis in the aquatic oligochaete Branchiura sowerbyi Beddard. Res Rep Fluoride 46:7–18

    CAS  Google Scholar 

  • Chapman D (1996) Water quality assessments a guide to the use of biota, sediments and water in environmental monitoring. Chapman and Hall Ltd, London, p 651

    Google Scholar 

  • Chen G, White P (2004) The mutagenic hazards of aquatic sediments: a review. Mutat Res 567:151–226

    Article  CAS  Google Scholar 

  • Chouchane H, Hoekstra AY, Krol MS, Mekonnen MM (2015) The water footprint of Tunisia from an economic perspective. Ecol Indic 52:311–319

    Article  Google Scholar 

  • COPEAU, European Program for “Control Web for pollution monitoring of water in Tunisia” (2009) Bull Sem Inform sur la Qualité de l’Eau, 3:8–9

  • Dave G, Aspegren P (2010) Comparative toxicity of leachates from 52 textiles to Daphnia magna. Ecotoxicol Environ Saf 73(7):1629–1632

  • Erciyas K, Sarikaya R (2010) Genotoxic evaluation of sodium fluoride in the somatic mutation and recombination test (SMART). Food Chem Toxicol 47:2860–2862

    Article  CAS  Google Scholar 

  • Fenech M, Bonassi S, Turner J, Lando C, Ceppi M, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Bigatti MP, Bolognesi C, Cao J, De Luca G, Di Giorgio M, Ferguson LR, Fucic A, Garcia Lima O, Hadjidekova VV, Hrelia P, Jaworska A, Joksic G, Krishnaja AP, Lee YK, Martelli A, McKay MJ, Migliore L, Mirkova E, Müller WU, Odagiri Y, Orsiere T, Scarf MR, Silva MJ, Sofuni T, Suralles J, Trenta G, Vorobtsova I, Vral A, Zijno A (2003) Intra- and inter-laboratory variation in the scoring of micronuclei and nucleoplasmic bridges in binucleated human lymphocytes results of an international slide-scoring exercise by the HUMN project. Mutat Res 534:45–64

    Article  CAS  Google Scholar 

  • Goswami P, Thirunavukkarasu S, Godhantaraman N, Munuswamy N (2014) Monitoring of genotoxicity in marine zooplankton induced by toxic metals in Ennore estuary, southeast coast of India. Mar Poll Bull 88:70–80

    Article  CAS  Google Scholar 

  • Houde M, Douville M, Gagnon P, Sproull J, Cloutier F (2015) Exposure of Daphnia magna to trichloroethylene (TCE) and vinyl chloride (VC): evaluation of gene transcription, cellular activity, and life-history parameters. Ecotoxicol Environ Saf 116:10–18

    Article  CAS  Google Scholar 

  • Jdid A, Blazy P, Kamoun S, Guedria A, Marouf B, Kitane S (1999) Environmental impact of mining activity on the pollution of the Medjerda River, north-west Tunisia. Bull Eng Geol Env 57:273–280

    Article  Google Scholar 

  • Jha AN (2004) Genotoxicological studies in aquatic organisms: an overview. Mutat Res Genet Toxicol Environ Mutagen 552:1–17

    Article  CAS  Google Scholar 

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano- and micro-scale oxide particles. Environ Pollut 157:1619–1625

    Article  CAS  Google Scholar 

  • Jolibois B, Guerbet M (2005) Evaluation of industrial, hospital and domestic wastewater genotoxicity with the Salmonella fluctuation test and the SOS Chromotest. Mutat Res Genet Toxicol Environ Mutagen 565:151–162

    Article  CAS  Google Scholar 

  • Klobucar G, Pavlica M, Erben R, Papes D (2003) Application of the micronucleus and comet assays to mussel Dreissena polymorpha haemocytes for genotoxicity monitoring of freshwater environments. Aquat Toxicol 64:15–23

    Article  CAS  Google Scholar 

  • Koçak E, Yetilmezsoy K, Gonullu MT, Petek M (2010) A statistical evaluation of the potential genotoxic activity in the surface waters of the Golden Horn Estuary. Mar Pollut Bull 60:1708–1717

    Article  CAS  Google Scholar 

  • Korbaa M, Bejaoui M, Boumaiza M (2009) Spatio-temporal variation of the structure of the ephemeropterofauna in Sejnane stream (Ichkeul, northern Tunisia). Rev Sci Eau 22:373–381

    Google Scholar 

  • Kreijl CF, Slooff W (1985) Mutagenic activity in Dutch river waters and its biological significance for fish. In: Zimmerman FK, Taylor-Mayer RE (eds) Mutagenicity testing in environmental pollution control. Horwood, London, pp 63–68

    Google Scholar 

  • Lacaze E, Devaux A, Mons R, Bony S, Garric J, Geffard A, Geffard O (2011) DNA damage in caged Gammarus fossarum amphipods: a tool for freshwater genotoxicity assessment. Environ Pollut 159:1682–1691

    Article  CAS  Google Scholar 

  • Li HH, Aubrecht J, Fornace AJ (2007) Toxicogenomics: overview and potential applications for the study of non-covalent DNA interacting chemicals. Mutat Res Fund Mol Mutag 623:98–108

    Article  CAS  Google Scholar 

  • Mansour M, Tarhouni J (2012) Etude qualitative de la retenue Sejnane (identification de l’origine des matières en suspension et du fer). Mémoire de Master, INAT, Tunisia, p 52

    Google Scholar 

  • Margaritora FG (1985) Cladocera, Fauna d’Italia 23, Calderini, Bologna, p 399

  • Maron D, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mut Res 113:173–215

    Article  CAS  Google Scholar 

  • Maruoka S, Yamasaki S, Yamamoto Y (1986) Isolation of mutagenic components by high-performance liquid chromatography from XAD extract of water from the Nishitakase River, Kyoto City, Japan. Sci Total Environ 57:29–38

    Article  CAS  Google Scholar 

  • Marvin CH, McCarry BE, Villella J, Allan LM, Bryant DW (2000) Chemical and biological profiles of sediments as indicators of sources of genotoxic contamination in Hamilton Harbour: part I. Analysis of polycyclic aromatic hydrocarbons and thia-arene compounds. Chemosphere 41:979–988

    Article  CAS  Google Scholar 

  • Marzougui A, Ben Mammou A (2006) The Sejnane dam : silting quantification and valuation of specific erosion of its catchment area. Geo Eco Trop 30:57–68

    Google Scholar 

  • Massoud MA, Scrimshawa MD, Lester JN (2003) Qualitative assessment of the effectiveness of the Mediterranean action plan: wastewater management in the Mediterranean region. Ocean Coast Manag 46:875–899

    Article  Google Scholar 

  • Meireles G, Abe F, Accoroni K, Zanoni M, Oliveira D (2014) The commercial textile dye disperse red 73 induces toxicity in Danio rerio and Daphnia similis. Toxicol Lett 229:S112

    Article  Google Scholar 

  • Metcalfe-Smith JL, Holtze KE, Sirota GR, Reid JJ, de Solla SR (2003) Toxicity of aqueous and sediment-associated fluoride to freshwater organisms. Environ Toxicol Chem 22:161–166

    Article  CAS  Google Scholar 

  • Mlayah A, Ferreira da Silva EA, Hatira N, Jellali S, Lachaal F, Charef A, Noronha F, Ben Hamza C (2011) The Oued Serrat: mining activity, ground water and dispersion of base metals in natural environments (North-Western Tunisia). Rev Sci Eau 24:159–175

    Google Scholar 

  • Morry DW, Steinmaus C (2011) Evidence of the carcinogenicity of fluoride and its salts. Reproductive and Cancer Hazard Assessment Branch Office of Environmental Health Hazard Assessment. California Environmental Protection Agency, USA, p 22

    Google Scholar 

  • Ochoa-Herrera V, Banihani Q, Leon G, Khatri C, Field JA, Sierra-Alvarez R (2009) Toxicity of fluoride to microorganisms in biological wastewater treatment systems. Water Res 43:3177–3186

    Article  CAS  Google Scholar 

  • Pant HH, Rao MV (2010) Evaluation of in vitro anti-genotoxic potential of melatonin against arsenic and fluoride in human blood cultures. Ecotoxicol Environ Saf 73:1333–1337

    Article  CAS  Google Scholar 

  • Pinheiro MAA, Duarte LFA, Toledo TR, Adam ML, Torres RA (2013) Habitat monitoring and genotoxicity in Ucides cordatus (Crustacea: Ucididae), as tools to manage a mangrove reserve in southeastern Brazil. Environ Monit Assess 185:8273–8285

    Article  CAS  Google Scholar 

  • Podder S, Chattopadhyay A, Bhattacharya S, Ray MR, Chakraborty A (2010) Fluoride induced genotoxicity in mouse bone marrow cells: effect of buthionine sulfoximine and N-acetyl cysteine. J Appl Toxicol 7:618–625

    Google Scholar 

  • Podder S, Chattopadhyay A, Bhattacharya S (2011) Reduction in fluoride-induced genotoxicity in mouse bone marrow cells after substituting high fluoride-containing water with safe drinking water. J Appl Toxicol 31(7):703–705

    Article  CAS  Google Scholar 

  • Poulsen R (2011) The effect of fluoride pollution on soil microorganisms. Thesis in partial fulfilment of a Baccalaureus Scientiarum degree in biochemistry. University of Iceland, Reykjavik, p 42

    Google Scholar 

  • Rocco L, Frenzilli G, Fusco D, Peluso C, Stingo V (2010) Evaluation of zebrafish DNA integrity after exposure to pharmacological agents present in aquatic environments. Ecotoxicol Environ Saf 73:1530–1536

    Article  CAS  Google Scholar 

  • Sadiq MI, Chowdhury B, Chandrasekaran N, Mukherjee A (2009) Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomed Nanotechnol Biol Med 5:282–286

    Article  CAS  Google Scholar 

  • Schmid W (1976) The micronucleus test for cytogenetic analysis. In: Hollander A (ed) Chemical mutagens 4. Plenum Press, New York, pp 31–53

    Chapter  Google Scholar 

  • Sellami I, Guermazi W, Hamza A, Aleya L, Ayadi H (2010) Seasonal dynamics of zooplankton community in four Mediterranean reservoirs in humid areas (Beni Mtir: north of Tunisia) and semi-arid area (Lakhmes, Nabhana and Sidi Saâd: center of Tunisia). J Therm Biol 25:392–400

    Article  Google Scholar 

  • Seukep J, Noumedem JAK, Djeussi DE, Kuete V (2014) Genotoxicity and teratogenicity of African medicinal plants. In: Kuete V (ed) Toxicol Survey of African Medicinal Plants, Elsevier, p 235–275

  • Shugart LR, Theodorakis C (1996) Genetic ecotoxicology: the genotypic diversity approach. Comp Biochem Physiol C 113:273–276

    Google Scholar 

  • Tamokou JD, Kuete V (2014) Mutagenicity and carcinogenicity of African medicinal plants. In: Kuete V (Ed) Toxicological survey of African medicinal Plants. pp 277–322

  • Tiwari H, Rao MV (2010) Curcumin supplementation protects from genotoxic effects of arsenic and fluoride. Food Chem Toxicol 48:1234–1238

    Article  CAS  Google Scholar 

  • Torres de Lemos C, de Almeida Iranço F, D'Ávila de Oliveira NC, Dornelles de Souza G, Guimarães Fachel JM (2008) Biomonitoring of genotoxicity using micronuclei assay in native population of Astyanax jacuhiensis (Characiformes: Characidae) at sites under petrochemical influence. Sci Total Environ 406:337–343

    Article  CAS  Google Scholar 

  • Walker GC (1987) The SOS response of E.coli. In: Neidhardt JC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington DC, pp 1346–1357

    Google Scholar 

  • Watanabe H, Kobayashi K, Kato Y, Oda S, Abe R, Tatarazako N, Iguchi T (2008) Genomic response in Daphnia to chemical pollutants. In: Murakami Y, Nakayama K, Kitamura SI, Iwata H, Tanabe S (eds) Interdisciplinary studies on environmental chemistry, vol 1. Biological Responses to Chemical Pollutants, Terrapub, Tokyo, pp 133–142

    Google Scholar 

  • Zouabi Aloui B, Gueddari M (2009a) Long-term water quality monitoring of the Sejnane reservoir in Northeast Tunisia. Bull Eng Geol Environ 68:307–316

    Article  CAS  Google Scholar 

  • Zouabi Aloui B, Gueddari M (2009b) A multivariate assessment of the trophic state of a man-made reservoir in North Tunisia. Limnol Rev 13(4):229–240

    Article  CAS  Google Scholar 

  • Zouabi Aloui B, Gueddari M (2013) A multivariate assessment of the trophic state of a man-made reservoir in North Tunisia. Limnol Rev 13(4):229–240

  • Zouabi Aloui B, Adelana SM, Gueddari M (2015) Effects of selective withdrawal on hydrodynamics and water quality of a thermally stratified reservoir in the southern side of the Mediterranean Sea: a simulation approach. Environ Monit Assess 187:292–311

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Soukeyna Mhedhbi and Karima Ltaief for their helpful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zouhour Ouanes-Ben Othmen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouanes-Ben Othmen, Z., Barka, S., Adeljelil, Z.B. et al. In situ genotoxicity assessment in freshwater zooplankton and sediments from different dams, ponds, and temporary rivers in Tunisia. Environ Sci Pollut Res 26, 1435–1444 (2019). https://doi.org/10.1007/s11356-018-3703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3703-6

Keywords

Navigation