Skip to main content

Advertisement

Log in

Distinctive impact of polystyrene nano-spherules as an emergent pollutant toward the environment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The increasing load of nanoplastic pollution in the environment has become a major concern toward human and environmental safety. The current investigation mainly focused on assessing the toxic behavior of nanoplastics (polystyrene nano-spheres (PNS)) toward blood cells and marine crustacean. The study also investigated the temporal stability of PNS under different water matrices and its size-dependent sedimentation behavior in the sea water dispersion. The nano-dispersion showed mean particle size of 561.4 ± 0.80 and 613.7 ± 0.11 nm for PNS 1 and 781.4 ± 0.80 and 913.7 ± 0.11 nm for PNS 2 in lake and seawater, respectively after 48-h incubation, which is ~ 8-fold increase from its original size. The LC50 value against Artemia salina and lymphocytes were found to be 4.82 and 8.79 μg/mL, and 75 μg/mL, respectively for PNS 1 and PNS 2. The genotoxic study reveals that around 50% of lymphocytes were affected by both PNS at 50 μg/mL concentration, whereas the cytotoxic studies on RBC and lymphocytes showed 50% toxicity only at 100 μg/mL concentration. The genotoxic study displayed numerous tri- and multi-nucleated cells. The biochemical profile of A. salina exposed to lethal concentration demonstrated a significant decrease in the total protein, reduced glutathione, and catalase activity and increase in lipid peroxidation activity as a result of PNS permeation to tissues. In conclusion, the present study demonstrated that the polystyrene nano-spheres are emerging pollutant in the environment and are hazardous to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abei H (1974) Catalase. Methods of Enzymatic Analysis 2:673–684

    Article  Google Scholar 

  • Andrady AL (2010) Measurement and occurrence of nanoplastics in the environment, vol 2010. Presentation at the 2nd research workshop on microplastic debris, Tacoma, pp 5–6

  • Andrady AL (2011) Nanoplastics in the marine environment. Mar Pollut Bull 62:1596e1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

    Article  CAS  Google Scholar 

  • Artells E, Issartel J, Auffan M, Borschneck D, Thill A, Tella M, Brousset L, Rose J, Bottero JY, Thiery A (2013) Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species. PLoS One 8(8):e71260

    Article  CAS  Google Scholar 

  • Ates M, Daniels J, Arslan Z, Farah IO, Rivera HF (2013) Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environ Sci: Process Impacts 15(1):225–233

    CAS  Google Scholar 

  • Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20(1):1–11

    Google Scholar 

  • Barnes DK, Galgani F, Thompson RC & Barlaz M (2009a) Accumulation and fragmentation of plastic debris in global environments. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 364, 1985–1998, https://doi.org/10.1098/rstb.2008.0205

  • Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009b) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B 364:1985–1998

    Article  CAS  Google Scholar 

  • Bergami E, Pugnalini S, Vannuccini ML, Manfra L, Faleri C, Savorelli F, Dawson KA, Corsi I (2017) Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquat Toxicol 189:159–169

    Article  CAS  Google Scholar 

  • Bergmann M, Gutow L, Klages M (eds) (2015) Marine anthropogenic litter. Springer

  • Besseling E, Wang B, Lürling M, Koelmans AA (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48(20):12336–12343

    Article  CAS  Google Scholar 

  • Besseling E, Quik JTK, Sun M, Koelmans AA (2017) Fate of nano- and microplastic in freshwater systems: a modeling study. Environ Pollut 220(Pt A):540–548

    Article  CAS  Google Scholar 

  • Bhattacharya P, Lin S, Turner JP, Ke PC (2010) Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J Phys Chem C 114:16556–16561

    Article  CAS  Google Scholar 

  • Bouwmeester H, Hollman PC, Peters RJ (2015) Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ Sci Technol 49(15):8932–8947

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Browne MA (2015) Sources and pathways of microplastic to habitats. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Berlin, pp 229–244

    Chapter  Google Scholar 

  • Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway TS et al (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45:9175–9179

    Article  CAS  Google Scholar 

  • Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47(12):6646–6655

    Article  CAS  Google Scholar 

  • Cózar A, Echevarria F, Gonzalez-Gordillo JI, Irigoien X, Ubeda B, Hernandez-Leon S, Palma AT, Navarro S, Garcia-de-Lomas J, Ruiz A, Fernandez-de-Puelles ML, Duarte CM (2014) Plastic debris in the open ocean. Proc Natl Acad Sci 111(28):10239–10244

    Article  CAS  Google Scholar 

  • Della Torre C, Bergami E, Salvati A, Faleri C, Cirino P, Dawson KA, Corsi I (2014) Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environ Sci Technol 48:12302–12311

    Article  CAS  Google Scholar 

  • Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44(9):842–852

    Article  CAS  Google Scholar 

  • Esser P. (1988) Principles in adsorption to polystyrene, Thermo Scientific Nunc Bulletin, 1–5

  • Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2(5):1084–1104

    Article  CAS  Google Scholar 

  • Fernández RG (2001) Artemia bioencapsulation I. effect of particle sizes on the filtering behavior of Artemia franciscana. J Crustac Biol 21(2):435–442

    Article  Google Scholar 

  • Free CM, Jensen OP, Mason SA, Eriksen M, Williamson NJ, Boldgiv B (2014) High-levels of microplastic pollution in a large, remote, mountain lake. Mar Pollut Bull 85:156–163

    Article  CAS  Google Scholar 

  • Galgani F, Hanke G, Maes T (2015) Global distribution, composition and abundance of marine litter. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Berlin, pp 29–56

    Chapter  Google Scholar 

  • Gigault J, Ter Halle A, Baudrimont M, Pascal PY, Gauffre F, Phi TL, El Hadri H, Grassl B, Reynaud S (2018) Current opinion: what is a nanoplastic? Environ Pollut 235:1030–1034

    Article  CAS  Google Scholar 

  • Hammer J, Kraak MH, Parsons JR (2012) Plastics in the marine environment: the dark side of a modern gift. Rev Environ Contam Toxicol 220:1–44

    CAS  Google Scholar 

  • Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Nanoplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075

    Article  CAS  Google Scholar 

  • Hong R, Kang TY, Michels CA, Gadura N (2012) Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli. Appl Environ Microbiol 78:1776–1784

    Article  CAS  Google Scholar 

  • Imhof HK, Ivleva NP, Schmid J, Niessner R, Laforsch C (2013) Contamination of beach sediments of a subalpine lake with microplastic particles. Curr Biol 23:867–868

    Article  CAS  Google Scholar 

  • Jackson GA (2015) Coagulation in a rotating cylinder. Limnol Oceanogr Methods 13(4):194–201

    Article  CAS  Google Scholar 

  • Jeong CB, Kang HM, Lee MC, Kim DH, Han J, Hwang DS, Lee JS (2017) Adverse effects of nanoplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana. Sci Rep 7:41323

    Article  CAS  Google Scholar 

  • Kashiwada S (2006) Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect 114:1697–1702

    Article  CAS  Google Scholar 

  • Khoshnood R, Jaafarzadeh N, Jamili S, Farshchi P, Taghavi L (2017) Acute toxicity of TiO2, CuO and ZnO nanoparticles in brine shrimp Artemia franciscana. Iran J Fish Sci 16(4):1287–1296

    Google Scholar 

  • Klaine SJ, Koelmans AA, Horne N, Handy RD, Kapustka L, Nowack B et al (2012) Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem 31:3–14

    Article  CAS  Google Scholar 

  • Koelmans AA, Besseling E, Foekema EM (2014) Leaching of plastic additives to marine organisms. Environ Pollut 187:49–54

    Article  CAS  Google Scholar 

  • Kumar D, Roy R, Parashar A, Raichur AM, Chandrasekaran N, Mukherjee A, Mukherjee A (2017) Toxicity assessment of zero valent iron nanoparticles on Artemia salina. Environ Toxicol 32(5):1617–1627

    Article  CAS  Google Scholar 

  • Lee KW, Shim WJ, Kwon OY, Kang J-H (2013) Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environ Sci Technol 47:11278–11283

    Article  CAS  Google Scholar 

  • Logan BE, Wilkinson DB (1990) Fractal geometry of marine snow and other biological aggregates. Limnol Oceanogr 35(1):130–136

    Article  Google Scholar 

  • Lu JW, Zhang ZP, Ren XZ, Chen YZ, Yu J, Guo ZX (2008) High-elongation fiber mats by electrospinning of polyoxymethylene. Macromolecules 41:3762–3764

    Article  CAS  Google Scholar 

  • Madhav MR, David SEM, Kumar RS, Swathy JS, Bhuvaneshwari M, Mukherjee A, Chandrasekaran N (2017) Toxicity and accumulation of copper oxide (CuO) nanoparticles in different life stages of Artemia salina. Environ Toxicol Pharmacol 52:227–238

    Article  CAS  Google Scholar 

  • Mattsson K, Johnson EV, Malmendal A, Linse S, Hansson L-A, Cedervall T (2017) Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci Rep 7(1):11452

    Article  CAS  Google Scholar 

  • Meyer S, Berrut S, Goodenough TIJ, Rajendram VS, Pinfield VJ, Povey MJW (2006) A comparative study of ultrasound and laser light diffraction techniques for particle size determination in dairy beverages. Meas Sci Technol 17(2):289–297

    Article  CAS  Google Scholar 

  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31(1):50–59

    Article  CAS  Google Scholar 

  • Pan D, Vargas-Morales O, Zern B, Anselmo AC, Gupta V, Zakrewsky M, Muzykantov V (2016) The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells. PLoS One 11(3):e0152074

    Article  CAS  Google Scholar 

  • Peng L, Wang B, Ren P (2005) Reduction of MTT by flavonoids in the absence of cells. Colloids Surf B: Biointerfaces 45(2):108–111

    Article  CAS  Google Scholar 

  • Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size control parameters. Prog Polym Sci 2011(36):887–913

    Article  CAS  Google Scholar 

  • Royer S-J, Ferrón S, Wilson ST, Karl DM (2018) Production of methane and ethylene from plastic in the environment. PLoS One 13(8):e0200574

    Article  CAS  Google Scholar 

  • Schoonhoven L (1982) Biological aspects of antifeedants. Entomologia experimentalis et applicata 31:57–69

    Article  CAS  Google Scholar 

  • Seltenrich N (2015) New link in the food chain? Marine plastic pollution and seafood safety. Environ Health Perspect 123(2):A34–A41

    Article  Google Scholar 

  • Sharma VK (2009) Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—a review. J Environ Sci Health Part A 44(14):1485–1495

    Article  CAS  Google Scholar 

  • Shim WJ, Song YK, Hong SH, Jang M, Han GM (2014) Producing fragmented micro and nano-sized expanded polystyrene particles with an accelerated mechanical abrasion experiment. May 2014, SETAC Annual Meeting, Basel, Switzerland

  • Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L et al (2017) Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol 51(23):13689–13697

    Article  CAS  Google Scholar 

  • Terra WR (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47:47–61

    Article  CAS  Google Scholar 

  • Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41(22):7759–7764

    Article  CAS  Google Scholar 

  • Thompson RC (2015) Nanoplastics in the marine environment: sources, consequences and solutions. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Berlin, pp 185–200

    Chapter  Google Scholar 

  • Velzeboer I, Kwadijk CJAF, Koelmans AA (2014a) Strong sorption of PCBs to nanoplastics, nanoplastics, carbon nanotubes and fullerenes. Environ Sci Technol 48:4869–4876

    Article  CAS  Google Scholar 

  • Velzeboer I, Quik JTK, van de Meent D, Koelmans AA (2014b) Rapid settling of nanomaterials due to hetero-aggregation with suspended sediment. Environ Toxicol Chem 33:1766–1773

    Article  CAS  Google Scholar 

  • Vishwakarma V, Samal SS, Manoharan N (2010) Safety and risk associated with nanoparticles-a review. J Miner Mater Charact Eng 9(5):455–459

    Google Scholar 

  • Wagner M, Scherer C, Alvarez-Muñoz D, Brennholt N, Bourrain X, Buchinger S, Fries E, Grosbois C, Klasmeier J, Marti T, Rodriguez-Mozaz S, Urbatzka R, Vethaak AD, Winther-Nielsen M, Reifferscheid G (2014) Nanoplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur 26:12

    Article  Google Scholar 

  • Ward JE, Kach DJ (2009) Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar Environ Res 68:137–142

    Article  CAS  Google Scholar 

  • Wegner A, Besseling E, Foekema EM, Kamermans P, Koelmans AA (2012) Effects of nanopolystyrene on the feeding behaviour of the blue mussel (Mytilus edulis L.). Environ Toxicol Chem 31:2490–2497

    Article  CAS  Google Scholar 

  • Zarfl C, Matthies M (2010) Are marine plastic particles transport vectors for organic pollutants to the Arctic? Mar Pollut Bull 60(10):1810–1814

    Article  CAS  Google Scholar 

  • Zbyszewski M, Corcoran PL (2011) Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water Air Soil Pollut 220:365–372

    Article  CAS  Google Scholar 

  • Zbyszewski M, Corcoran PL, Hockin A (2014) Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, Norht America. J Great Lakes Res 2014(40):288–299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We extend our profound thanks to VIT, Vellore for providing the proper lab amenities to carry out this research work. We greatly appreciate the efforts of Dr. P.M.Gopinath, DST-NPDF, Centre for Nanobiotechnology, VIT University, Vellore, in the data analysis and revision process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natarajan Chandrasekaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, P., Vinayagam, S., Duraisamy, K. et al. Distinctive impact of polystyrene nano-spherules as an emergent pollutant toward the environment. Environ Sci Pollut Res 26, 1537–1547 (2019). https://doi.org/10.1007/s11356-018-3698-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3698-z

Keywords

Navigation