Pyrethroid pesticide metabolite, 3-PBA, in soils: method development and application to real agricultural soils

Abstract

3-Phenoxybenzoic acid (3-PBA) is a shared metabolite of several synthetic pyrethroid pesticides (SPs) resulting from environmental degradation of parent compounds and thus occurs frequently as a residue in samples. Hence, the importance of 3-PBA evaluation after pyrethroid application. There is a gap of analytical methods to determine 3-PBA in soil samples. Therefore, an analytical method that combines the solid-phase extraction (SPE) and gas chromatography–mass spectrometry (GC/MS) detection has been developed for the determination of 3-PBA in soil samples. The analytical method was validated in terms of linearity, sensitivity, intra- and inter-day batch precisions, recoveries, and quantification limits. An SPE method using a Strata X cartridge allows obtaining limits of detection and quantification equal to 4.0 and 13.3 ng g−1, respectively. Under optimized conditions, the method average recovery levels ranged from 70.3 to 93.5% with a relative standard deviation below 3.4%. Method intra- and inter-day precision was under 5.0 and 4.8%, respectively. The developed method was applied to 11 agricultural soil samples in the north of Portugal. The developed methodology allowed for the determination of the pyrethroid metabolite, 3-PBA, in agricultural soil samples at levels of few ng g−1.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ahn KC, Gee SJ, Kim HJ, Aronov PA, Vega H, Krieger RI, Hammock BD (2011) Immunochemical analysis of 3-phenoxybenzoic acid, a biomarker of forestry worker exposure to pyrethroid insecticides. Anal Bioanal Chem 401:1285–1293. https://doi.org/10.1007/s00216-011-5184-z

    Article  CAS  Google Scholar 

  2. Albaiges J (2016) High performance liquid chromatography in pesticide residue analysis. Int J Environ Anal Chem 96:1507–1508. https://doi.org/10.1080/03067319.2016.1257708

    Article  CAS  Google Scholar 

  3. Amweg EL, Weston DP, You J, Lydy MJ (2006) Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Environ Sci Technol 40:1700–1706. https://doi.org/10.1021/es051407c

    Article  CAS  Google Scholar 

  4. Arrebola FJ, Martı́nez-Vidal JL, Fernández-Gutiérrez A, Akhtar MH (1999) Monitoring of pyrethroid metabolites in human urine using solid-phase extraction followed by gas chromatography-tandem mass spectrometry. Anal Chim Acta 401:45–54. https://doi.org/10.1016/S0003-2670(99)00519-X

    Article  CAS  Google Scholar 

  5. Aylward LL, Irwin K, St-Amand A, Nong A, Hays SM (2018) Screening-level biomonitoring equivalents for tiered interpretation of urinary 3-phenoxybenzoic acid (3-PBA) in a risk assessment context. Regul Toxicol Pharmacol 92:29–38. https://doi.org/10.1016/j.yrtph.2017.11.002

    Article  CAS  Google Scholar 

  6. Braganca I, Placido A, Paiga P, Domingues VF, Delerue-Matos C (2012) QuEChERS: a new sample preparation approach for the determination of ibuprofen and its metabolites in soils. Sci Total Environ 433:281–289. https://doi.org/10.1016/j.scitotenv.2012.06.035

    Article  CAS  Google Scholar 

  7. Burns CJ, Pastoor TP (2018) Pyrethroid epidemiology: a quality-based review. Crit Rev Toxicol 48:297–311. https://doi.org/10.1080/10408444.2017.1423463

    Article  CAS  Google Scholar 

  8. Chen S, Lai K, Li Y, Hu M, Zhang Y, Zeng Y (2011a) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01. Appl Microbiol Biotechnol 90:1471–1483. https://doi.org/10.1007/s00253-011-3136-3

    Article  CAS  Google Scholar 

  9. Chen S, Yang L, Hu M, Liu J (2011b) Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol 90:755–767. https://doi.org/10.1007/s00253-010-3035-z

    Article  CAS  Google Scholar 

  10. Chen S, Hu W, Xiao Y, Deng Y, Jia J, Hu M (2012) Degradation of 3-phenoxybenzoic acid by a Bacillus sp. PLoS One 7:e50456. https://doi.org/10.1371/journal.pone.0050456

    Article  CAS  Google Scholar 

  11. Chuang JC, Van Emon JM, Trejo RM, Durnford J (2011) Biological monitoring of 3-phenoxybenzoic acid in urine by an enzyme-linked immunosorbent assay. Talanta 83:1317–1323. https://doi.org/10.1016/j.talanta.2010.07.077

    Article  CAS  Google Scholar 

  12. Columé A, Cárdenas S, Gallego M, Valcárcel M (2001) A solid phase extraction method for the screening and determination of pyrethroid metabolites and organochlorine pesticides in human urine. Rapid Commun Mass Spectrom 15:2007–2013. https://doi.org/10.1002/rcm.471

    Article  Google Scholar 

  13. Corcellas C, Eljarrat E, Barcelo D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116. https://doi.org/10.1016/j.envint.2014.11.007

    Article  CAS  Google Scholar 

  14. Correia-Sa L, Fernandes VC, Carvalho M, Calhau C, Domingues VF, Delerue-Matos C (2012) Optimization of QuEChERS method for the analysis of organochlorine pesticides in soils with diverse organic matter. J Sep Sci 35:1521–1530. https://doi.org/10.1002/jssc.201200087

    Article  CAS  Google Scholar 

  15. Domingues VF, Priolo G, Alves AC, Cabral MF, Delerue-Matos C (2007) Adsorption behavior of α -cypermethrin on cork and activated carbon. J Environ Sci Health B 42:649–654. https://doi.org/10.1080/03601230701465635

    Article  CAS  Google Scholar 

  16. Domingues VF, Nasuti C, Piangerelli M, Correia-Sá L, Ghezzo A, Marini M, Abruzzo P, Visconti P, Giustozzi M, Rossi G, Gabbianelli R (2016) Pyrethroid pesticide metabolite in urine and microelements in hair of children affected by autism Spectrum disorders: a preliminary investigation. Int J Environ Res Public Health 13:388

    Article  CAS  Google Scholar 

  17. European c (2010) Guidance document on pesticide residue analytical methods vol SANCO/825/00 rev. 8.1. European Commision - Directorate General Health and Consumer Protection

  18. European c (2013) Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed vol SANCO/12571/2013. European commission - health & consumer protection directorate-general,

  19. Fedeli D, Montani M, Bordoni L, Galeazzi R, Nasuti C, Correia-Sá L, Domingues VF, Jayant M, Brahmachari V, Massaccesi L, Laudadio E, Gabbianelli R (2017) In vivo and in silico studies to identify mechanisms associated with Nurr1 modulation following early life exposure to permethrin in rats. Neuroscience 340:411–423. https://doi.org/10.1016/j.neuroscience.2016.10.071

    Article  CAS  Google Scholar 

  20. Feo ML, Ginebreda A, Eljarrat E, Barcelo D (2010) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393:156–162. https://doi.org/10.1016/j.jhydrol.2010.08.012

    Article  CAS  Google Scholar 

  21. Fernandez-Alvarez M, Llompart M, Lamas JP, Lores M, Garcia-Jares C, Cela R, Dagnac T (2008) Simultaneous determination of traces of pyrethroids, organochlorines and other main plant protection agents in agricultural soils by headspace solid-phase microextraction-gas chromatography. J Chromatogr A 1188:154–163. https://doi.org/10.1016/j.chroma.2008.02.080

    Article  CAS  Google Scholar 

  22. Halden RU, Tepp SM, Halden BG, Dwyer DF (1999) Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains. Appl Environ Microbiol 65:3354–3359

    CAS  Google Scholar 

  23. Hesse PR (ed) (1972) A textbook of soil chemical analysis. Chemical Publishing Co., Inc., New York. https://doi.org/10.1017/S0014479700005202

    Google Scholar 

  24. Jain RB (2016) Variability in the levels of 3-phenoxybenzoic acid by age, gender, and race/ethnicity for the period of 2001–2002 versus 2009–2010 and its association with thyroid function among general US population. Environ Sci Pollut Res 23:6934–6939. https://doi.org/10.1007/s11356-015-5954-9

    Article  CAS  Google Scholar 

  25. Kaneko H (2010) Pyrethroid chemistry and metabolism. In: Krieger R (ed) Hayes' handbook of pesticide toxicology, 3rd edn. Academic Press, New York, pp 1635–1663. https://doi.org/10.1016/B978-0-12-374367-1.00076-8

    Google Scholar 

  26. Kittusamy G, Kandaswamy C, Kandan N, Subramanian M (2014) Pesticide residues in two frog species in a paddy agroecosystem in Palakkad district, Kerala, India. Bull Environ Contam Toxicol 93:728–734. https://doi.org/10.1007/s00128-014-1351-1

    Article  CAS  Google Scholar 

  27. Kumari B, Madan VK, Kathpal TS (2008) Status of insecticide contamination of soil and water in Haryana. India Environ Monit Assess 136:239–244. https://doi.org/10.1007/s10661-007-9679-1

    Article  CAS  Google Scholar 

  28. Leng G, Berger-Preiss E, Levsen K, Ranft U, Sugiri D, Hadnagy W, Idel H (2005) Pyrethroids used indoor-ambient monitoring of pyrethroids following a pest control operation. Int J Hyg Environ Health 208:193–199

    Article  CAS  Google Scholar 

  29. Li C, Chen L (2013) Determination of Pyrethroid pesticides in environmental waters based on magnetic titanium dioxide nanoparticles extraction followed by HPLC analysis. Chromatographia 76:409–417. https://doi.org/10.1007/s10337-013-2393-y

    Article  CAS  Google Scholar 

  30. Liang WQ, Wang ZY, Li H, Wu PC, Hu JM, Luo N, Cao LX, Liu YH (2005) Purification and characterization of a novel Pyrethroid hydrolase from Aspergillus niger ZD11. J Agric Food Chem 53:7415–7420. https://doi.org/10.1021/jf051460k

    Article  CAS  Google Scholar 

  31. Luo YZ, Zhang MH (2011) Environmental modeling and exposure assessment of sediment-associated Pyrethroids in an agricultural watershed. PLoS One 6:1–10. e15794. https://doi.org/10.1371/journal.pone.0015794

    CAS  Article  Google Scholar 

  32. Maloney SE, Maule A, Smith AR (1988) Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl Environ Microbiol 54:2874–2876

    CAS  Google Scholar 

  33. Matveeva EG, Shan G, Kennedy IM, Gee SJ, Stoutamire DW, Hammock BD (2001) Homogeneous fluoroimmunoassay of a pyrethroid metabolite in urine. Anal Chim Acta 444:103–117. https://doi.org/10.1016/S0003-2670(01)01161-8

    Article  CAS  Google Scholar 

  34. Meyer BN, Lam C, Moore S, Jones RL (2013) Laboratory degradation rates of 11 Pyrethroids under aerobic and anaerobic conditions. J Agric Food Chem 61:4702–4708. https://doi.org/10.1021/jf400382u

    Article  CAS  Google Scholar 

  35. Morgan MK (2012) Children's exposures to Pyrethroid insecticides at home: a review of data collected in published exposure measurement studies conducted in the United States. Int J Environ Res Public Health 9:2964–2985. https://doi.org/10.3390/ijerph9082964

    Article  CAS  Google Scholar 

  36. Nelson DWaLES (1996) Total carbon, organic carbon, and organic matter. In: Page AL (ed) Methods of Soil Analysis, Part 2, 2nd ed. Agronomy 9 Edn. Am. Soc. of Agron., Inc. Madison, WI, pp 961–1010

  37. Ortiz-Hernández ML, Sánchez-Salinas E, Dantán-González E, Castrejón-Godínez ML (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. In: Chamy R, Rosenkranz F (eds) Biodegradation. IntechOpen. https://doi.org/10.5772/52777. Available from: https://www.intechopen.com/books/biodegradation-life-of-science/pesticidebiodegradation-mechanisms-genetics-and-strategies-to-enhance-the-process

  38. Palmquist K, Salatas J, Fairbrother A (2012) Pyrethroid insecticides: use, environmental fate, and ecotoxicology. In: Perveen DF (ed) Insecticides. IntechOpen. https://doi.org/10.5772/29495. Available from: https://www.intechopen.com/books/insecticides-advances-in-integratedpest-management/pyrethroid-insecticides-use-environmental-fate-and-ecotoxicology

  39. Pesticide Properties DataBase (n.d.) University of Hertfordshire. www.herts.ac.uk/aeru. Acessed 20 Sept 2018

  40. Regueiro J, Llompart M, Garcia-Jares C, Cela R (2007) Development of a high-throughput method for the determination of organochlorinated compounds, nitromusks and pyrethroid insecticides in indoor dust. J Chromatogr A 1174:112–124. https://doi.org/10.1016/j.chroma.2007.08.052

    Article  CAS  Google Scholar 

  41. Rodriguez-Mozaz S, Lopez de Alda MJ, Barceló D (2007) Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography–mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J Chromatogr A 1152:97–115. https://doi.org/10.1016/j.chroma.2007.01.046

    Article  CAS  Google Scholar 

  42. Schettgen T, Dewes P, Kraus T (2016) A method for the simultaneous quantification of eight metabolites of synthetic pyrethroids in urine of the general population using gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 408:5467–5478. https://doi.org/10.1007/s00216-016-9645-2

    Article  CAS  Google Scholar 

  43. Shan GM, Huang HZ, Stoutamire DW, Gee SJ, Leng G, Hammock BD (2004) A sensitive class specific immunoassay for the detection of pyrethroid metabolites in human urine. Chem Res Toxicol 17:218–225. https://doi.org/10.1021/tx034220c

    Article  CAS  Google Scholar 

  44. Tallur PN, Megadi VB, Ninnekar HZ (2008) Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19:77–82. https://doi.org/10.1007/s10532-007-9116-8

    Article  CAS  Google Scholar 

  45. Tang W, Wang D, Wang J, Wu Z, Li L, Huang M, Xu S, Yan D (2018) Pyrethroid pesticide residues in the global environment: an overview. Chemosphere 191:990–1007. https://doi.org/10.1016/j.chemosphere.2017.10.115

    Article  CAS  Google Scholar 

  46. Ueyama J, Saito I, Kamijima M (2010) Analysis and evaluation of pyrethroid exposure in human population based on biological monitoring of urinary pyrethroid metabolites. J Pestic Sci 35:87–98. https://doi.org/10.1584/jpestics.R10-01

    Article  CAS  Google Scholar 

  47. Vera J, Correia-Sá L, Paíga P, Bragança I, Fernandes Virgínia C, Domingues Valentina F, Delerue-Matos C (2013) QuEChERS and soil analysis. An Overview Sample Preparation 1:54. https://doi.org/10.2478/sampre-2013-0006

  48. Vidal JLM, Plaza-Bolanos P, Romero-Gonzalez R, Frenich AG (2009) Determination of pesticide transformation products: a review of extraction and detection methods. J Chromatogr A 1216:6767–6788. https://doi.org/10.1016/j.chroma.2009.08.013

    Article  CAS  Google Scholar 

  49. White GF, Russell NJ, Tidswell EC (1996) Bacterial scission of ether bonds. Microbiol Rev 60:216−+

    Google Scholar 

  50. Xu C, Li X, Jin M, Sun X, Niu L, Lin C, Liu W (2018) Early life exposure of zebrafish (Danio rerio) to synthetic pyrethroids and their metabolites: a comparison of phenotypic and behavioral indicators and gene expression involved in the HPT axis and innate immune system. Environ Sci Pollut Res 25:12992–13003. https://doi.org/10.1007/s11356-018-1542-0

    Article  CAS  Google Scholar 

  51. Yang XB, Ying GG, Kookana RS (2010) Rapid multiresidue determination for currently used pesticides in agricultural drainage waters and soils using gas chromatography-mass spectrometry. J Environ Sci Health Part B-Pestic Contam Agric Wastes 45:152–161. https://doi.org/10.1080/03601230903472165

    Article  CAS  Google Scholar 

  52. Yao LX, Huang LX, Li GL, He ZH, Zhou CM, Yang BM, Guo B (2010) Pesticide residual status in litchi orchard soils in Guangdong, China. Huan Jing Ke Xue 31:2723–2726

    CAS  Google Scholar 

  53. Ye X, Pan W, Zhao S, Zhao Y, Zhu Y, Liu J, Liu W (2017) Relationships of Pyrethroid exposure with gonadotropin levels and pubertal development in Chinese boys. Environ Sci Technol 51:6379–6386. https://doi.org/10.1021/acs.est.6b05984

    Article  CAS  Google Scholar 

  54. Yoshida T (2009) Simultaneous determination of 18 pyrethroids in indoor air by gas chromatography/mass spectrometry. J Chromatogr A 1216:5069–5076. https://doi.org/10.1016/j.chroma.2009.04.087

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to all financing sources.

Funding

I. Bragança is financially supported by FCT through the doctoral research grant financed by fellowship (SFRH/BD/52504/2014). This work was supported by the Associate Laboratory for Green Chemistry-LAQV which is financed by national funds from FCT/MCTES (UID/QUI/50006/2013) and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007265).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Valentina F. Domingues.

Additional information

Highlights

• An analytical method that combines an aqueous solid-liquid extraction, the SPE procedure, and GC/MS detection has been introduced for determination of 3-PBA in soil samples for the first time

• An SPE method at ng g−1 level has been validated for the detection of 3-PBA in soil

• Recoveries at the three fortification levels ranged from 70.3 to 93.5%

• The pyrethroid metabolite, 3-PBA, was detected in agricultural soil sample at levels of few nanograms per gram.

Responsible editor: Ester Heath

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bragança, I., Lemos, P.C., Delerue-Matos, C. et al. Pyrethroid pesticide metabolite, 3-PBA, in soils: method development and application to real agricultural soils. Environ Sci Pollut Res 26, 2987–2997 (2019). https://doi.org/10.1007/s11356-018-3690-7

Download citation

Keywords

  • 3-phenoxybenzoic acid
  • Solid-phase extraction
  • Soils
  • Gas chromatography/mass spectrometry