Skip to main content
Log in

Indoor phthalates from household dust in Qatar: implications for non-dietary human exposure

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phthalates are ubiquitous semi-volatile organic compounds in the indoor environment present in various consumer products such as cosmetics, polyvinylchloride (PVC) flooring, food packing, and many others. Indoor phthalate concentrations were investigated in 15 buildings including 11 homes, 3 laboratories, and 1 from a hospital in Qatar. Dust samples were collected from vacuum cleaning bags usually used for cleaning homes, labs, and hospitals. The main objectives of this study was to determine the occurrence and concentration of phthalates in dust in Qatar and consequently to estimate the non-dietary human exposure. Eleven phthalates was analyzed. The major identified phthalate compounds at homes in Qatar were bis(2-ethylhexyl) phthalate unlabeled (DEHP) and diisononyl phthalate (DINP) at a geometric mean of 288 μg/g (median 395 μg/g) and 106 μg/g (median 101 μg/g) accounting for 57% and 23% of the total measured phthalates, respectively. The major phthalate compounds found in the first lab building were DEHP and DINP with a median of 4861 μg/g and 943 μg/g, respectively, accounting for 82% and 16% of the total phthalates. For the second lab building, the major phthalates were DEHP with a median of 466 μg/g, accounting for 20% of the total phthalates measured, and DINP median of 1725 μg/g, accounting for 71% of the total measured phthalates. The dust sample tested from hospital building had DEHP as the major phthalate compound with a median of 793 μg/g, accounting for 4.0% of the total measured phthalates, and DINP with a median of 19,626 μg/g, accounting for 94%. The estimated human non-dietary exposure for children, adults, and toddlers was based on phthalate concentrations (median) and found to be 225 ng/kg bw/day for children, 2328 ng/kg bw/day for adults, and 2099 ng/kg bw/day for toddlers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abb M, Heinrich T, Sorkau E, & Lorenz W (2009) Phthalates in house dust. Environment International, 35(6), 965–970

  • Afshari A, Gunnarsen L, Clausen PA, Hanse V (2004) Emission of phthalates from PVC and other materials. Indoor Air 14(2):120–128

    Article  CAS  Google Scholar 

  • Albar HMSA, Ali N, Shahzad K, Ismail IMI, Rashid MI, Wang W, Eqani SAMAS (2017) Phthalate esters in settled dust of different indoor microenvironments; source of non-dietary human exposure. Microchem J 132:227–232

    Article  CAS  Google Scholar 

  • Andersson P, Rännar S (2009) A report on the initial procedure for identification of chemical/article/use combinations of concern, including the selected case-study chemicals. Chemi. Tecs. Report P2-D2, Umeå

  • BAUCH (1991) Analyse und Bewertung der in Raumluft und Hausstaub vorhandenen Konzentrationen der Weichmacherbestandteile Diethylhexylphthalat (DEHP) und Dibutylphthalat (DBP) Sachstandsbericht. Eigenverlag, Berlin

    Google Scholar 

  • Becker K, Seiwert M, Angerer J, Heger W, Koch HM, Nagorka R, Ullrich D (2004) DEHP metabolites in urine of children and DEHP in house dust. Intern J of Hyg Environ Health 207(5):409–417

    Article  CAS  Google Scholar 

  • Bizzari S, Oppenberg B, Ishikawa Y (2000) Plasticizers. Chemical Economics Handbook, SRI International, Palo Alto

    Google Scholar 

  • Bornehag CG, Lundgren B, Weschler CJ, Sigsgaard T, Hagerhed-Engman L, Sundell J (2005a) Phthalates in indoor dust and their association with building characteristics. Enviro Health Persp 113:1399–1404

    Article  CAS  Google Scholar 

  • Bornehag CG, Lundgren B, Weschler CJ, Sigsgaard T, Hagerhed-Engman L, Sundell J (2005b) Phthalates in indoor dust and their association with building characteristics. Environ Health Persp 113:1399–1404

    Article  CAS  Google Scholar 

  • Butte W, Hostrup O, Walker G (2008) Phthalates in house dust and air: associations and potential sources indoors. Gefahrstoffe Reinhaltung Der Luft 68(3):79–81

    CAS  Google Scholar 

  • Calafat AM, McKee RH (2006) Integrating biomonitoring exposure data into the risk assessment process: phthalates [diethyl phthalate and di (2-ethylhexyl) phthalate] as a case study. Environmental health perspectives, 114(11):1783

  • Carlstedt F, Jönsson BAG, Bornehag CG (2013) PVC flooring is related to human uptake of phthalates in infants. Indoor Air 23(1):32–39

    Article  CAS  Google Scholar 

  • Clausen PA, Bille RLL, Nilsson T, Hansen V, Svensmark B, Bøwadt S (2003) Simultaneous extraction of di (2-ethylhexyl) phthalate and nonionic surfactants from house dust: concentrations in floor dust from 15 Danish schools. J of Chromatogr A 986(2):179–190

    Article  CAS  Google Scholar 

  • Clausen PA, Hansen V, Gunnarsen L, Afshari A, Wolkoff P (2014) Emission of di-2-ethylhexyl phthalate from PVC flooring into air and uptake in dust: emission and sorption experiments in FLEC and CLIMPAQ. Environ Sci Tech 38(9):2531–2537

    Article  Google Scholar 

  • De Orsi D, Gagliardi L, Porra R, Berri S, Chimenti P, Granese A, Tonelli DA (2006) Environmentally friendly reversed-phase liquid chromatography method for phthalates determination in nail cosmetics. Anal Chim Acta 555(2):238–241

    Article  Google Scholar 

  • Di Bella G, Saitta M, Pellegrino M, Salvo F, Dugo G (1999) Contamination of Italian citrus essential oils: presence of phthalate esters. J Agri Food Chem 47(3):1009–1012

    Article  Google Scholar 

  • Expertanswer (2012) May 23, Phthalates in PVC floors taken up by the body in infants.ScienceDaily. Retrieved September 19, 2012, from http://www.sciecnedaily.com/releases/2012/05/120523102142.htm

  • Fromme H (2011) Phthalates: exposure. In: Jo N (ed) Encyclopedia of environmental health, vol 4. Elsevier, Burlington, pp 498–510

    Chapter  Google Scholar 

  • Fromme H, Lahrz T, Piloty M, Gebhart H, Oddoy A, Rüden H (2004) Occurrence of phthalates and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin (Germany). Indoor Air 14(3):188–195

    Article  CAS  Google Scholar 

  • Gevao B, Al-Ghadban AN, Bahloul M, Uddin S, Zafar J (2013) Phthalates in indoor dust in Kuwait: implications for non-dietary human exposure. Indoor Air 23(2):126–133

    Article  CAS  Google Scholar 

  • Guo Y, Kannan K (2011) Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Environ Sci Tech 45(8):3788–3794

    Article  CAS  Google Scholar 

  • Guo Y, Alomirah H, Cho HS, Minh TB, Mohd MA, Nakata H, Kannan K (2011) Occurrence of phthalate metabolites in human urine from several Asian countries. Environ Sci Tech 45(7):3138–3144

    Article  CAS  Google Scholar 

  • Harrad S, de Wit CA, Abdallah MAE, Bergh C, Björklund JA, Covaci A, Leonards P (2010) Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds: an important exposure pathway for people? Environ Sci Tech 44(9):3221–3231

    Article  CAS  Google Scholar 

  • Hsu NY, Lee CC, Wang JY, Li YC, Chang HW, Chen CY, Su HJ (2012) Predicted risk of childhood allergy, asthma, and reported symptoms using measured phthalate exposure in dust and urine. Indoor Air 22(3):186–199

    Article  CAS  Google Scholar 

  • Kersten W, Reich T (2003) Schwer flüchtige organische Umweltchemikalien in Hamburger Hausstäuben. Gefahrstoffe–Reinhalt Luft 63(3):85–91

    CAS  Google Scholar 

  • Kolarik B, Bornehag CG, Naydenov K, Sundell J, Stavova P, Nielsen OF (2008) The concentrations of phthalates in settled dust in Bulgarian homes in relation to building characteristic and cleaning habits in the family. Atm Environ 42(37):8553–8559

    Article  CAS  Google Scholar 

  • Konstantin C, Huanwen C, Gerardo G, Liang Z, Renato Z (2009) Detection of diethyl phthalates in perfumes by extractive electrospray ionization mass spectrometry. Anal Chem 81(1):123–129

    Article  Google Scholar 

  • Langer S, Weschler CJ, Fischer A, Bekö G, Toftum J, Clausen G (2010) Phthalate and PAH concentrations in dust collected from Danish homes and daycare centers. Atm Environ 44(19):2294–2301

    Article  CAS  Google Scholar 

  • Latini G, De Felice C, Presta G, Del Vecchio A, Paris I, Ruggieri F, Mazzeo P (2003) In utero exposure to di-(2-ethylhexyl) phthalate and duration of human pregnancy. Environ Health Persp 111(14):1783–1785

    Article  CAS  Google Scholar 

  • Lin X, Shen T (2009) Characteristics of phthalate esters pollution in indoor settled dust. J Environ Health 26(12):1109–1111

    CAS  Google Scholar 

  • Liu L, Bao H, Liu F, Zhang J, Shen H (2012) Phthalates exposure of Chinese reproductive age couples and its effect on male semen quality, a primary study. Environ Inter 42:78–83

    Article  CAS  Google Scholar 

  • Ma LL, Chu SG, Xu XB (2003) Phthalate residues in greenhouse soil from Beijing suburbs, People’s Republic of China. Bull Environ Contam Toxic 71(2):0394–0399

    Article  CAS  Google Scholar 

  • Nagorka R, Scheller C, Ullrich D (2005) Plasticizer in house dust. Gefahrstoffe Reinhaltung Der Luft 65(3):99–105

    CAS  Google Scholar 

  • Orecchio S, Indelicato R, Barreca S (2013) The distribution of phthalate esters in indoor dust of Palermo (Italy). Environ Geochem Health 35(5):613–624

    Article  CAS  Google Scholar 

  • Pei XQ, Song M, Guo M, Mo FF, Shen XY (2013) Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments. Atm Environ 68:17–23

    Article  CAS  Google Scholar 

  • Peters RJ (2003) Hazardous chemicals in consumer products. TNO report, 2003, 370

  • Plastics Europe Deutschland e. V (2006) Argumente Kunststoff und Phthalate

    Google Scholar 

  • Pors J, Fuhlendorff R (2001) Phthalates and organic tin compounds in PVC products. Miljö-Kemi for Danish Environmental Protection Agency, Copenhagen, Denmark

  • Rännar S, Andersson PL (2010) A novel approach using hierarchical clustering to select industrial chemicals for environmental impact assessment. J of Chem Inform Mod 50(1):30–36

    Article  Google Scholar 

  • Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG (2003) Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Tech 37(20):4543–4553

    Article  CAS  Google Scholar 

  • Salvatore B, Roberta I, Santino O, Andrea P (2014) Phtotodegradation of selected phthalates on mural painting surfaces under UV light irradiation. Microchem J 114:192–196

    Article  Google Scholar 

  • Santillo D, Labunska I, Davidson H, Johnston P, Strutt M, Knowles O (2003) Consuming Chemicals–Hazardous Chemicals in House Dust as an Indicator of Chemical Exposure in the Home Greenpeace Research Laboratories. GRL-TN-01-2003

  • Schweizer C, Edwards RD, Bayer-Oglesby L, Gauderman WJ, Ilacqua V, Jantunen MJ, Künzli N (2006) Indoor time–microenvironment–activity patterns in seven regions of Europe. J Expo Sci Environ Epid 17(2):170–181

    Article  Google Scholar 

  • Sheldon L, Whitaker D, Keever J, Clayton A, Perritt R (1993) Phthalates and PAHs in indoor and outdoor air in a southern California community. Indoor Air 93:109–114

    Google Scholar 

  • Sørensen LK (2006) Determination of phthalates in milk and milk products by liquid chromatography/tandem mass spectrometry. Rapid Comm Mass Spec 20(7):1135–1143

    Article  Google Scholar 

  • Swan SH (2008) Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res 108(2):177–184

    Article  CAS  Google Scholar 

  • Toda H, Sako K, Yagome Y, Nakamura T (2004) Simultaneous determination of phosphate esters and phthalate esters in clean room air and indoor air by gas chromatography–mass spectrometry. Anal Chim Acta 519(2):213–218

    Article  CAS  Google Scholar 

  • Toft G, Jönsson BA, Lindh CH, Jensen TK, Hjollund NH, Vested A, Bonde JP (2012) Association between pregnancy loss and urinary phthalate levels around the time of conception. Environ Health Persp 120(3):458–463

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (2002) Child-Specific Exposure Factors Handbook

  • USEPA N (2011) Exposure factors handbook 2011 edition (final), Washington, District of Columbia, U.S. Environmental Protection Agency, EPA/600/ R-09/052F

  • Weschler CJ (1984) Indoor-outdoor relationships for nonpolar organic constituents of aerosol particles. Environ Sci Technol 18(9):648–652

    Article  CAS  Google Scholar 

  • Weschler CJ, Nazaroff WW (2008) Semivolatile organic compounds in indoor environments. Atm Environ 42(40):9018–9040

    Article  CAS  Google Scholar 

  • Weschler CJ, Nazaroff WW (2010) SVOC partitioning between the gas phase and settled dust indoors. Atm Environ 44(30):3609–3620

    Article  CAS  Google Scholar 

  • Weschler CJ, Nazaroff WW (2012) SVOC exposure indoors: fresh look at dermal pathways. Indoor Air 22(5):356–377

    Article  CAS  Google Scholar 

  • Wormuth M, Scheringer M, Vollenweider M, Hungerbühler K (2006) What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal 26(3):803–824

    Article  Google Scholar 

  • Xu Y, Cohen HEA, Clausen PA, Little JC (2009) Predicting residential exposure to phthalate plasticizer emitted from vinyl flooring: a mechanistic analysis. Environ Sci Tech 43(7):2374–2380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the following students, Habiba A. A., Zeinab E. M.d., Samiya S. M., and Yasmin M. A. from Qatar University, for their engagement in the summer internship, contribution in sample collection, and extraction during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murad I. H. Helaleh.

Additional information

Responsible editor: Constantini Samara

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al_Qasmi, N.N., Al-Thaiban, H. & Helaleh, M.I.H. Indoor phthalates from household dust in Qatar: implications for non-dietary human exposure. Environ Sci Pollut Res 26, 421–430 (2019). https://doi.org/10.1007/s11356-018-3604-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3604-8

Keywords

Navigation