Skip to main content

Advertisement

Log in

Enantioselective degradation of the chiral alpha-cypermethrin and detection of its metabolites in five plants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Alpha-cypermethrin (α-cypermethrin), an important chiral pyrethroid insecticide, is frequently detected in human samples. Because of the possible human health risks caused by α-cypermethrin, we studied dynamics, residues, and metabolism of α-cypermethrin in five common vegetables (tomato, cucumber, rape, cabbage, and pepper) on enantiomeric levels after foliar spray. α-Cypermethrin was qualified by a HP-5 column and its enantiomers could be separated by gas chromatograph (GC) using a BGB-172 chiral column. The results of degradation showed that α-cypermethrin dissipated rapidly in vegetables with half-lives being only 2.85–8.88 days. Stereoselective degradation was observed on pepper and cucumber while the two metabolites (cis-DCCA and 3-PBA) of α-cypermethrin were not detected during its dissipation in all plants. This is the first evidence of enantioselective degradation of α-cypermethrin in the five common vegetables and the results should be considered in future environmental risk and food safety evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker SE, Olsson AO, Barr DB (2004) Isotope dilution high-performance liquid chromatography-tandem mass spectrometry method for quantifying urinary metabolites of synthetic pyrethroid insecticides. Arch Environ Contam Toxicol 46:281

    Article  CAS  Google Scholar 

  • Sereda B, Bouwman H, Kylin H (2009) Comparing water, bovine milk, and indoor residual spraying as possible sources of DDTand pyrethroid residues in breast milk. J Toxicol Environ Health 72:842–851

    Article  CAS  Google Scholar 

  • Barr DB, Olsson AO, Wong LY, Udunka S, Baker SE, Whitehead RD, Magsumbol MS, Williams BL, Needham LL (2010) Urinary concentrations of metabolites of pyrethroid insecticides in the general U.S. population: national health and nutrition examination survey 1999–2002. Environ Health Perspect 118:742–748

    Article  CAS  Google Scholar 

  • Bergerpreiss E, Levsen K, Leng G, Idel H, Sugiri D, Ranft U (2002) Indoor pyrethroid exposure in homes with woollen textile floor coverings. Int J Hyg Environ Health 205:459–472

    Article  Google Scholar 

  • Diao J, Xu P, Liu D, Lu Y, Zhou Z (2011) Enantiomer-specific toxicity and bioaccumulation of alpha-cypermethrin to earthworm Eisenia fetida. J Hazard Mater 192:1072–1078

    Article  CAS  Google Scholar 

  • Du G, Shen O, Hong S, Fei J, Lu C, Ling S, Xia Y, Wang S, Wang X (2010) Assessing hormone receptor activities of pyrethroid insecticides and their metabolites in reporter gene assays. Toxicol Sci 116:58–66

    Article  CAS  Google Scholar 

  • Gottardi M, Birch MR, Dalhoff K, Cedergreen N (2017) The effects of epoxiconazole and α-cypermethrin on Daphnia magna growth, reproduction, and offspring size. Environ Toxicol Chem 36:2155–2166

    Article  CAS  Google Scholar 

  • Hardt J, Angerer J (2003) Biological monitoring of workers after the application of insecticidal pyrethroids. Int Arch Occup Environ Health 76:492–498

    CAS  Google Scholar 

  • Heudorf U, Angerer J (2001) Metabolites of pyrethroid insecticides in urine specimens: current exposure in an urban population in Germany. Environ Health Perspect 109:213–217

    Article  CAS  Google Scholar 

  • Jin Y, Zheng S, Fu Z (2011) Embryonic exposure to cypermethrin induces apoptosis and immunotoxicity in zebrafish (Danio rerio). Fish Shellfish Immunol 30:1049–1054

    Article  CAS  Google Scholar 

  • Jin Y, Zhang P, Wang X, Xu M, Wang Y, Zhou Z, Zhu W (2015) Stereoselective degradation of alpha-Cypermethrin and its enantiomers in rat liver microsomes. Chirality 28:58–64

    Google Scholar 

  • Knaak JB, Dary CC, Zhang X, Gerlach RW, Tornero-Velez R, Chang DT, Goldsmith R, Blancato JN (2012): Parameters for pyrethroid insecticide QSAR and PBPK/PD models for human risk assessment. Springer New York, 1–114 pp

  • Leahey JP (1979) The metabolism and environmental degradation of the pyrethroid insecticides. Outlook Agric 10:135–142

    Article  CAS  Google Scholar 

  • Leicht W, Fuchs R, Londershausen M (2015) Stability and biological activity of cyfluthrin isomers. Pest Manag Sci 48:325–332

    Article  Google Scholar 

  • Liu W, Gan JJ, Lee S, Werner I (2004) Isomer selectivity in aquatic toxicity and biodegradation of cypermethrin. J Agric Food Chem 52:6233–6238

    Article  CAS  Google Scholar 

  • Liu W, Gan J, Schlenk D, Jury WA (2005) Enantioselectivity in environmental safety of current chiral insecticides. Proc Natl Acad Sci U S A 102:701–706

    Article  CAS  Google Scholar 

  • Łozowicka B, Jankowska M, Kaczyński P (2012) Pesticide residues in Brassica vegetables and exposure assessment of consumers. Food Control 25:561–575

    Article  CAS  Google Scholar 

  • Mckinlay R, Plant JA, Bell JNB, Voulvoulis N (2008) Endocrine disrupting pesticides: implications for risk assessment. Environ Int 34:168–183

    Article  CAS  Google Scholar 

  • Meeker JD, Barr DB, Hauser R (2009) Pyrethroid insecticide metabolites are associated with serum hormone levels in adult men. Reprod Toxicol 27:155–160

    Article  CAS  Google Scholar 

  • Metwally ES, Osman MS, Al-Rushaid R (1997) A high-performance liquid chromatographic method for the determination of cypermethrin in vegetables and its application to kinetic studies after greenhouse treatment. Food Chem 59:283–290

    Article  CAS  Google Scholar 

  • Moore A, Waring CP (2001) The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.). Aquat Toxicol 52:1–12

    Article  CAS  Google Scholar 

  • Mueller MD, Buser HR (1995) Environmental behavior of acetamide pesticide stereoisomers. 2. Stereo- and enantioselective degradation in sewage sludge and soil. Environ Sci Technol 29:2031–2037

    Article  CAS  Google Scholar 

  • Naeher LP, Tulve NS, Egeghy PP, Barr DB, Adetona O, Fortmann RC, Needham LL, Bozeman E, Hilliard A, Sheldon LS (2010) Organophosphorus and pyrethroid insecticide urinary metabolite concentrations in young children living in a southeastern United States city. Sci Total Environ 408:1145–1153

    Article  CAS  Google Scholar 

  • Qu H, Wang P, Ma RX, Qiu XX, Xu P, Zhou ZQ, Liu DH (2014) Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia feotida). Sci Total Environ 485:415–420

    Article  CAS  Google Scholar 

  • Schettgen T, Heudorf U, Drexler H, Angerer J (2002) Pyrethroid exposure of the general population-is this due to diet. Toxicol Lett 134:141–145

    Article  CAS  Google Scholar 

  • Singleton ST, Lein PJ, Farahat FM, Farahat T, Bonner MR, Knaak JB, Olson JR (2014) Characterization of α-cypermethrin exposure in Egyptian agricultural workers. Int J Hyg Environ Health 217:538–545

    Article  CAS  Google Scholar 

  • Smith SW (2009) Chiral toxicology: it’s the same thing...only different. Toxicol Sci 110:4–30

    Article  CAS  Google Scholar 

  • Solomon KR, Giddings JM, Maund SJ (2001) Probabilistic risk assessment of cotton pyrethroids: I. distributional analyses of laboratory aquatic toxicity data. Environ Toxicol Chem 20:652–659

    Article  CAS  Google Scholar 

  • Starr J, Graham S, Andrews K, Nishioka M (2008) Pyrethroid pesticides and their metabolites in vacuum cleaner dust collected from homes and day-care centers. Environ Res 108:271–279

    Article  CAS  Google Scholar 

  • Sun H, Xu XL, Xu LC, Song L, Hong X, Chen JF, Cui LB, Wang XR (2007) Antiandrogenic activity of pyrethroid pesticides and their metabolite in reporter gene assay. Chemosphere 66:474–479

    Article  CAS  Google Scholar 

  • Sun M, Liu D, Zhou G, Li J, Qiu X, Zhou Z, Wang P (2012) Enantioselective degradation and chiral stability of malathion in environmental samples. J Agric Food Chem 60:372–379

    Article  CAS  Google Scholar 

  • Tyler CR, Beresford N, Woning MVD, Sumpter JP, Thorpe K (2000) Metabolism and environmental degradation of pyrethroid insecticides produce compounds with endocrine activities. Environ Toxicol Chem 19:801–809

    Article  CAS  Google Scholar 

  • Velisek J, Wlasow T, Gomulka P, Svobodova Z, Dobsikova R, Novotny L, Dudzik M (2006): Effects of cypermethrin on rainbow trout (Oncorhynchus mykiss). Veterinarni Medicina - UZPI (Czech Republic) 51: 469

  • Wolansky MJ, Harrill JA (2008) Neurobehavioral toxicology of pyrethroid insecticides in adult animals: a critical review. Neurotoxicol Teratol 30:55–78

    Article  CAS  Google Scholar 

  • Worthing CR, Walker SB (1983) The pesticide manual, a world compendium. British Crop Protection Council

  • Xia Y, Han Y, Wu B, Wang S, Gu A, Lu N, Bo J (2008) The relation between urinary metabolite of pyrethroid insecticides and semen quality in humans. Fertil Steril 89:1743–1750

    Article  CAS  Google Scholar 

  • Xu P, Huang L (2017) Effects of α-cypermethrin enantiomers on the growth, biochemical parameters and bioaccumulation in Rana nigromaculata tadpoles of the anuran amphibians. Ecotoxicol Environ Saf 139:431–438

    Article  CAS  Google Scholar 

  • Yao G, Xu J, Wang P, Liu X, Zhou Z, Liu D (2015) Chiral insecticide α-cypermethrin and its metabolites: stereoselective degradation behavior in soils and the toxicity to earthworm eisenia fetida. J Agric Food Chem 63:7714–7720

    Article  CAS  Google Scholar 

  • Ye J, Zhao M, Niu L, Liu W (2015) Enantioselective environmental toxicology of chiral pesticides. Chem Res Toxicol 28:325–338

    Article  CAS  Google Scholar 

  • Ye M, Beach J, Martin JW, Senthilselvan A (2016) Urinary concentrations of pyrethroid metabolites and its association with lung function in a Canadian general population. Occup Environ Med 73:119–126

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Contract Grants: 21337005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Zhou.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, G., Gao, J., Zhang, C. et al. Enantioselective degradation of the chiral alpha-cypermethrin and detection of its metabolites in five plants. Environ Sci Pollut Res 26, 1558–1564 (2019). https://doi.org/10.1007/s11356-018-3594-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3594-6

Keywords

Navigation