Skip to main content
Log in

Two-step modification towards enhancing the adsorption capacity of fly ash for both inorganic Cu(II) and organic methylene blue from aqueous solution

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A new adsorption material from fly ash (FA) was prepared by a two-step surface modification process, which showed higher ability for the removal of both inorganic and organic cationic pollutants from aqueous solution, i.e., Cu2+ and methylene blue (MB). Firstly, FA was modified by hydrothermal method in alkaline solution at 80 °C (FA80) to have a larger BET surface area. Afterwards, FA80 was further modified by sodium dodecyl benzene sulfonate (SDBS), of which a layer of anionic functional groups were grafted on the surface. The adsorption performance of SDBS@FA80 for removal of Cu2+ and MB were detailedly investigated. The results showed that SDBS@FA80 presented the optimal adsorption capacity at pH 7.0. Additionally, the maximum adsorption capacities of SDBS@FA80 for the removal Cu2+ and MB were up to 227.3 and 50.76 mg g−1 at 70 °C, respectively, as well as being about three times higher than that of FA. When the initial concentrations of Cu2+ and MB were lower than those of 20 and 10 ppm, their removal efficiencies were as high as 99.75 and 96.4%, respectively. The pseudo-second-order model was well applied to describe the adsorption kinetics, indicating that chemisorption was taking place. Furthermore, a plausible mechanism is proposed by XPS studies, where the high adsorption capacity is mainly contributed to the electrostatic attraction and π–π stacking interaction between the cationic Cu2+/MB and anionic functional groups of SDBS. Due to the low-cost and high adsorption capacity, SDBS@FA80 is regarded as a promising adsorbent for the removal of cationic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energ Combust 36(3):327–363

    Article  CAS  Google Scholar 

  • Almeida CAP, Debacher NA, Downs AJ, Cottet L, Mello CAD (2009) Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J Colloid Interface Sci 332(1):46–53

    Article  CAS  Google Scholar 

  • Azhar MR, Abid HR, Periasamy V, Sun H, Tade MO, Wang S (2017) Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment. J Colloid Interface Sci 500(15):88–95

    Article  CAS  Google Scholar 

  • Bandura L, Kołodyńska D, Franus W (2017) Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash. Process Saf Environ 109:214–223

    Article  CAS  Google Scholar 

  • Bărbuţă M, Harja M, Baran I (2010) Comparison of mechanical properties for polymer concrete with different types of filler. J Mater Civil Eng 22(7):696–701

    Article  Google Scholar 

  • Baumann T, Fruhstorfer P, Klein T, Niessner R (2006) Colloid and heavy metal transport at landfill sites in direct contact with groundwater. Water Res 40(14):2776–2786

    Article  CAS  Google Scholar 

  • Bessbousse H, Rhlalou T, Verchère JF, Lebrun L (2008) Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly(ethyleneimine) in a poly(vinyl alcohol) matrix. J Membrane Sci 307(2):249–259

    Article  CAS  Google Scholar 

  • Cao M, Fu A, Wang Z, Liu J, Kong N, Zong X, Liu H, Gooding JJ (2014) Electrochemical and theoretical study of π–π stacking interactions between graphitic surfaces and pyrene derivatives. J Phys Chem C 118(5):2650–2659

    Article  CAS  Google Scholar 

  • Cardoso AM, Paprocki A, Ferret LS, Azevedo CMN, Pires M (2015) Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment. Fuel 139:59–67

    Article  CAS  Google Scholar 

  • Damodar RA, You SJ, Ou SH (2010) Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment. Sep Purif Technol 76(1):64–71

    Article  CAS  Google Scholar 

  • Dong Y, Wu D, Chen X, Lin Y (2010) Adsorption of bisphenol A from water by surfactant-modified zeolite. J Colloid Interface Sci 348(2):585–590

    Article  CAS  Google Scholar 

  • Du G, Liao J, Mei L, Guo W, Zuo R, Li Z (2013) Surface modification of diatomite by titanate and its effects on properties of reinforcing NR/SBR blend. Int J Mater Prod Tec 46(4):244–254

    Article  CAS  Google Scholar 

  • Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, Su X (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368(1):540–546

    Article  CAS  Google Scholar 

  • Grebenyuk VD, Verbich SV, Linkov NA, Linkov VM (1998) Adsorption of heavy metal ions by aminocarboxyl ion exchanger ANKB-35. Desalination 115(3):239–254

    Article  CAS  Google Scholar 

  • Grosvenor AP, Bellhouse EM, Korinek A, Bugnet M, Mcdermid JR (2016) XPS and EELS characterization of Mn2SiO4, MnSiO3 and MnAl2O4. Appl Surf Sci 379:242–248

    Article  CAS  Google Scholar 

  • Harja M, Bărbuţă M, Gavrilescu M (2009) Study of morphology for geopolymer materials obtained from fly ash. Environ Eng Manag J 8:1021–1027

    Article  CAS  Google Scholar 

  • Harja M, Buema G, Munteanu C, Bucur D (2012) Low cost adsorbents obtained from ash for copper removal. Korean J Chem Eng 29(12):1735–1744

    Article  CAS  Google Scholar 

  • He K, Chen Y, Tang Z, Hu Y (2016) Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environ Sci Pollut Res 23(3):2778–2788

    Article  CAS  Google Scholar 

  • Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  • Hsu TC, Yu CC, Yeh CM (2008) Adsorption of Cu2+ from water using raw and modified coal fly ashes. Fuel 87(7):1355–1359

    Article  CAS  Google Scholar 

  • Hu LQ, Dai L, Liu R, Si CL (2017) Lignin-graft-poly(acrylic acid) for enhancement of heavy metal ion biosorption. J Mater Sci 52(24):13689–13699

    Article  CAS  Google Scholar 

  • Janos P, Buchtová H, Rýznarová M (2003) Sorption of dyes from aqueous solutions onto fly ash. Water Res 37(20):4938–4944

    Article  CAS  Google Scholar 

  • Kannan C, Muthuraja K, Devi MR (2013) Hazardous dyes removal from aqueous solution over mesoporous aluminophosphate with textural porosity by adsorption. J Hazard Mater 244-245(2):10–20

    Article  CAS  Google Scholar 

  • Langmuir I (1916) Constitution and fundamental properties of solids and liquids: I, solids. J Am Chem Soc 183:102–105

    Google Scholar 

  • Lee MG, Yi G, Ahn BJ, Roddick F (2000) Conversion of coal fly ash into zeolite and heavy metal removal characteristics of the products. Korean J Chem Eng 17(3):325–331

    Article  CAS  Google Scholar 

  • Li ZH, Bowman RS (1998) Sorption of perchloroethylene by surfactant-modified zeolite as controlled by surfactant loading. Environ Sci Technol 32(32):2278–2282

    Article  CAS  Google Scholar 

  • Li Y, Liu C, Luan Z, Peng X, Zhu C, Chen Z, Zhang Z, Fan J, Jia Z (2006) Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. J Hazard Mater 137(1):374–383

    Article  CAS  Google Scholar 

  • Lin JX, Zhan SL, Fang MH, Qian XQ, Yang H (2008) Adsorption of basic dye from aqueous solution onto fly ash. J Environ Manag 87(1):193–200

    Article  CAS  Google Scholar 

  • Lin L, Lin Y, Li C, Wu D, Kong H (2016) Synthesis of zeolite/hydrous metal oxide composites from coal fly ash as efficient adsorbents for removal of methylene blue from water. Int J Miner Process 148(1):32–40

    Article  CAS  Google Scholar 

  • Luo J, Shen H, Markström H, Wang Z, Niu Q (2011) Removal of Cu2+ from aqueous solution using fly ash. J Miner Mater Charact Eng 10(6):561–571

    Google Scholar 

  • Mishra SP, Mohanty SS, Das T, Pradhan GC, Chaudhury GR (2000) Removal of heavy metal ions from waste water by precipitation. Trans Indian Inst Metals 53(4):535–538

    CAS  Google Scholar 

  • Muñoz MI, Aller AJ (2012) Chemical modification of coal fly ash for the retention of low levels of lead from aqueous solutions. Fuel 102(102):135–144

    Article  Google Scholar 

  • Nidheesh PV, Zhou M, Oturan MA (2018) An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197:210–227

    Article  CAS  Google Scholar 

  • Ozcan A, Oncü EM, Ozcan AS (2006) Adsorption of acid blue 193 from aqueous solutions onto DEDMA-sepiolite. J Hazard Mater 129(1):244–252

    Article  Google Scholar 

  • Pehlivan E, Cetin S (2008) Application of fly ash and activated carbon in the removal of Cu2+ and Ni2+ ions from aqueous solutions. Energ Sour 30(13):1153–1165

    Article  CAS  Google Scholar 

  • Pehlivan E, Cetin S, Yanik BH (2006) Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. J Hazard Mater 135(1–3):193–199

    Article  CAS  Google Scholar 

  • Pengthamkeerati P, Satapanajaru T, Chularuengoaksorn P (2008) Chemical modification of coal fly ash for the removal of phosphate from aqueous solution. Fuel 87(12):2469–2476

    Article  CAS  Google Scholar 

  • Pimraksa K, Hanjitsuwan S, Chindaprasirt P (2009) Synthesis of belite cement from lignite fly ash. Ceram Int 35(6):2415–2425

    Article  CAS  Google Scholar 

  • Pizarro J, Castillo X, Jara S, Ortiz C, Navarro P, Cid H, Rioseco H, Barros D, Belzile N (2015) Adsorption of Cu2+ on coal fly ash modified with functionalized mesoporous silica. Fuel 156:96–102

    Article  CAS  Google Scholar 

  • Qu J, Cao CY, Hong YL, Chen CQ, Zhu PP, Song WG, Wu ZY (2012a) New hierarchical zinc silicate nanostructures and their application in lead ion adsorption. J Mater Chem 22(8):3562–3567

    Article  CAS  Google Scholar 

  • Qu J, Li W, Cao CY, Yin XJ, Zhao L, Bai J, Qin Z, Song WG (2012b) Metal silicate nanotubes with nanostructured walls as superb adsorbents for uranyl ions and lead ions in water. J Mater Chem 22(33):17222–17226

    Article  CAS  Google Scholar 

  • Rao L, Cao J, Zhang H, Yang L, Pang Y, Liu Y, Wang J (2006) Study on preparation of fly ash water permeable brick. New Build Mater (in Chinese)

  • Ren H, Jiang J, Wu D, Gao Z, Sun Y, Luo C (2016) Selective adsorption of Pb(II) and Cr(VI) by surfactant-modified and unmodified natural zeolites: a comparative study on kinetics, equilibrium, and mechanism. Water Air Soil Poll 227(4):1–11

    Article  CAS  Google Scholar 

  • Rieratorres M, Gutiérrezbouzán C, Crespi M (2010) Combination of coagulation-flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination 252(1):53–59

    Article  CAS  Google Scholar 

  • Rubio J, Souza ML, Smith RW (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15(3):139–155

    Article  CAS  Google Scholar 

  • Sari A, Tuzen M, Soylak M (2007) Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. J Hazard Mater 144(1–2):41–46

    Article  CAS  Google Scholar 

  • Sarı A, Tuzen M, Cıtak D, Soylak M (2007) Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. J Hazard Mater 148(1):387–394

    Article  Google Scholar 

  • Sarker M, Bhadra BN, Seo PW, Jhung SH (2016) Adsorption of benzotriazole and benzimidazole from water over a co-based metal azolate framework MAF-5(co). J Hazard Mater 324(Pt B):131–138

    Google Scholar 

  • Shao D, Jiang Z, Wang X (2010) SDBS modified XC-72 carbon for the removal of Pb(II) from aqueous solutions. Plasma Process Polym 7:552–560

    Article  CAS  Google Scholar 

  • Simonin JP (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263

    Article  CAS  Google Scholar 

  • Singhbabu YN, Kumari P, Parida S, Sahu RK (2014) Conversion of pyrazoline to pyrazole in hydrazine treated N-substituted reduced graphene oxide films obtained by ion bombardment and their electrical properties. Carbon 74(264):32–43

    Article  CAS  Google Scholar 

  • Sočo E, Kalembkiewicz J (2013) Adsorption of nickel(II) and copper(II) ions from aqueous solution by coal fly ash. J Environ Chem Eng 1(3):581–588

    Article  Google Scholar 

  • Unlü N, Ersoz M (2006) Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. J Hazard Mater 136(2):272–280

    Article  Google Scholar 

  • Wang S, Zhu ZH (2005) Sonochemical treatment of fly ash for dye removal from wastewater. J Hazard Mater 126(1–3):91–95

    Article  CAS  Google Scholar 

  • Wang S, Boyjoo Y, Choueib A, Zhu ZH (2005) Removal of dyes from aqueous solution using fly ash and red mud. Water Res 39(1):129–138

    Article  CAS  Google Scholar 

  • Wang L, Zhang J, Wang A (2008) Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloids Surf A Physicochem Eng Asp 322(1):47–53

    Article  CAS  Google Scholar 

  • Wang H, Duan M, Guo Y, Wang C, Shi Z, Liu J, Lv J (2018) Graphene oxide edge grafting of polyaniline nanocomposite: an efficient adsorbent for methylene blue and methyl orange. Water Sci Technol 77(12):2751–2760

    Google Scholar 

  • Wdowin M, Franus M, Panek R, Badura L, Franus W (2014) The conversion technology of fly ash into zeolites. Clean Techn Environ Policy 16(6):1217–1223

    Article  CAS  Google Scholar 

  • Wen H, Jiao C, Zhang J (2018) Adsorption characteristics of methylene blue by biochar prepared using sheep, rabbit and pig manure. Environ Sci Pollut Res 1–11

  • Xie Q, Lin Y, Wu D, Kong H (2017) Performance of surfactant modified zeolite/hydrous zirconium oxide as a multi-functional adsorbent. Fuel 203:411–418

    Article  CAS  Google Scholar 

  • Yang C, Sun H (2014) Surface-bulk partition of surfactants predicted by molecular dynamics simulations. J Phys Chem B 118(36):10695–10703

    Article  CAS  Google Scholar 

  • Zhang Q, Yu J, Cai J, Song R, Cui Y, Yang Y, Chen B, Qian G (2014) A porous metal-organic framework with -COOH groups for highly efficient pollutant removal. Chem Commun 50(92):14455–14458

    Article  CAS  Google Scholar 

  • Zhang D, Zhu MY, Jin-Gang YU, Meng HW, Jiao FP (2017) Effective removal of brilliant green from aqueous solution with magnetic Fe 3 O 4 @SDBS@LDHs composites. Trans Nonferrous Metals Soc 27(12):2673–2681

    Article  CAS  Google Scholar 

  • Zhou F, Yan C, Wang H, Zhou S, Liang H (2017) The result of surfactants on froth flotation of unburned carbon from coal fly ash. Fuel 190:182–188

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51672025, 51572020, 51372019); Major Projects of Science and Technology in Shanxi Province (MC2016-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Zhang.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Liu, Y., Wang, C. et al. Two-step modification towards enhancing the adsorption capacity of fly ash for both inorganic Cu(II) and organic methylene blue from aqueous solution. Environ Sci Pollut Res 25, 36449–36461 (2018). https://doi.org/10.1007/s11356-018-3585-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3585-7

Keywords

Navigation